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INTRODUCTION 

In sample surveys, surveyors often find that they are 

working with data such as income, abortions, drugs, AIDS, 

etc., that have skewed distributions. It is more appropriate 

to consider mode as a measure of location than the mean 

or the median in forecasting ready-made products, such as 

garments, shoes, etc., in manufacturing. The work 

presented here is intended to be helpful for social 

scientists, psychologists, demographers, business, and 

economics, where the mode is regularly used in practice. Y 

is a study variable with the population mean Y̅ =
N−1 ∑ Yi ,

N
i=1  population mode Ỹ, population median My, 

probability density function fY(y), and cumulative 

distribution functions FY(y), X is an auxiliary variable with 

the population mean X̅ = N−1 ∑ Xi,
N
i=1  population mode X̃, 

population median Mx, probability density function fX(x), 
and cumulative distribution function FX(x), and Z is an 

additional auxiliary variable with the population mean Z̅ =
N−1 ∑ Zi ,

N
i=1  population mode Z̃, population median Mz, 

probability density function fZ(z), and cumulative 

distribution function FZ(z). ρyx, ρxz, and ρyz are the 

correlation coefficients among the study variable Y and the 

auxiliary variable X, and the additional auxiliary variable 

Z. Chand et al and Guha et al introduced chain estimators 

for the population mean and population total in the case 

when the population mean X̅ of the auxiliary variable X, is 

not available, but the population mean Z̅ or attribute of the 
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additional auxiliary variable Z, closely related to X, is 

available, which may be cheaper and less correlated to the 

study variable Y.1,4 

Table 1: Matrices of proportions. 

Auxiliary 

variable 𝑿\ 

Study 

variable 𝒀 

Study 

variable 𝒀 ≤ 

Population 

median 𝑴𝒚 

Study 

variable 𝒀 > 

Population 

median 𝑴𝒚 

Total 

Auxiliary 

variable 𝑿 ≤ 

Population 

median 𝑴𝒙 

𝑝11𝑥
𝑦

 𝑝21𝑥
𝑦

 𝑝.1𝑥
𝑦

 

Auxiliary 

variable 𝑿 > 

Population 

median 𝑴𝒙 

𝑝12𝑥
𝑦

 𝑝22𝑥
𝑦

 𝑝.1𝑥
𝑦

 

Total 𝑝1.𝑥
𝑦

 𝑝2.𝑥
𝑦

 1 

Auxiliary 

variable 𝒁\ 

Study 

variable 𝒀 

Study 

variable 𝑌 ≤ 

Population 

median 𝑀𝑦 

Study 

variable 𝑌 > 

Population 

median 𝑀𝑦 

Total 

Auxiliary 

variable 𝒁 ≤ 

Population 

median 𝑴𝒛 

𝑝11𝑧
𝑦

 𝑝21𝑧
𝑦

 𝑝.1𝑧
𝑦

 

Auxiliary 

variable 𝒁 > 

Population 

median 𝑴𝒛 

𝑝12𝑧
𝑦

 𝑝22𝑧
𝑦

 𝑝.1𝑧
𝑦

 

Total 𝑝1.𝑧
𝑦

 𝑝2.𝑧
𝑦

 1 

Auxiliary 

variable 𝑿\ 

Auxiliary 

variable 𝒁 

Auxiliary 

variable 𝑍 ≤ 

Population 

median 𝑀𝑧 

Auxiliary 

variable 𝑍 > 

Population 

median 𝑀𝑧 

Total 

Auxiliary 

variable 𝑿 ≤ 

Population 

median 𝑴𝒙 

𝑝11𝑥
𝑧

 𝑝21𝑥
𝑧  𝑝.1𝑥

𝑧  

Auxiliary 

variable 𝑿 > 

Population 

median 𝑴𝒙 

𝑝12𝑥
𝑧  𝑝22𝑥

𝑧  𝑝.1𝑥
𝑧  

Total 𝑝1.𝑥
𝑧  𝑝2.𝑥

𝑧  1 

Similarly, for estimating the population mode, there may 

be a case when the population mode X̃ of the auxiliary 

variable X, is not available, but the population mode Z̃ of 

the additional auxiliary variable Z, closely related to X, is 

available, which may be cheaper and less correlated to the 

study variable Y. In such a situation, the unknown X̃ can be 

estimated using a two-phase sampling scheme invented by 

Neyman.3 The collection of information on X is cheaper, 

so, a large preliminary sample of size n′ selected from the 

population using simple random sampling without 

replacement, is considered for collecting information on X 

and Z for estimating X̃ as X̂̃ =
x̃′

z̃′ Z,̃ where x̃′ is the first-

phase sample mode of X, and z̃′ is the first-phase sample 

mode of Z. A sub-sample of size n selected from the first-

phase sample using simple random sampling without 

replacement is further used for noting both the variables Y 

and X. yi is the second-phase sample measurements on Y 

with sample mode ỹ, and sample median M̂y. xi is the 

second-phase sample measurements on X with sample 

mode x̃, and sample median M̂x. We define: 

y̅ = n−1 ∑ yi
n
i=1 , x̅ = n−1 ∑ xi

n
i=1 , z̅ = n−1 ∑ zi

n
i=1 , 

x̅′ = n′−1 ∑ xi
n′

i=1 , z̅′ = n′−1 ∑ zi
n′

i=1 , 

 sy
2 = (n − 1)−1 ∑ (yi − y̅)2n

i=1 , sx
2 = (n − 1)−1 ∑ (xi − x̅)2n

i=1 , 

sz
2 = (n − 1)−1 ∑ (zi − z̅)2n

i=1 , 𝑆𝑦
2 = (𝑁 − 1)−1 ∑ (𝑌𝑖 − 𝑌̅)2𝑁

𝑖=1 ,  

𝑆𝑥
2 = (𝑁 − 1)−1 ∑ (𝑋𝑖 − 𝑋̅)2𝑁

𝑖=1 , 𝑆𝑧
2 = (𝑁 − 1)−1 ∑ (𝑍𝑖 − 𝑍̅)2𝑁

𝑖=1 , 

𝑆𝑦𝑥   = (𝑁 − 1)−1 ∑ (𝑌𝑖 − 𝑌̅)(𝑋𝑖 − 𝑋̅)
𝑁

𝑖=1
 

𝑆𝑧𝑥   = (𝑁 − 1)−1 ∑ (𝑍𝑖 − 𝑍̅)(𝑋𝑖 − 𝑋̅)
𝑁

𝑖=1
 

𝑆𝑦𝑧   = (𝑁 − 1)−1 ∑ (𝑌𝑖 − 𝑌̅)(𝑍𝑖 − 𝑍̅)
𝑁

𝑖=1
, 

𝑄𝑦(𝑝) = Inf(𝑝 ≤ 𝐹(𝑦), 𝑦 ∈ ℝ), 𝑄𝑥(𝑝) = Inf(𝑝 ≤ 𝐹(𝑥), 𝑥 ∈ ℝ), 

𝑄𝑧(𝑝) = Inf(𝑝 ≤ 𝐹(𝑧), 𝑧 ∈ ℝ) 

Where ℝ is the real number, and p is the pth percentile. 

List the Y values of the second-phase sample units in 

ascending order as y(1), y(2), … , y(n). Suppose p =
I0

n
 be the 

proportion of y (≤ My) values y(1), y(2), … , y(n), where 

both the values p, and My are not known and I0 is an 

integer such that yI0
≤ My ≤ yI0+1. Hence, My is 

approximately the sample pth quantile Q̂y(p). Here, both 

p, and My can be estimated from the sample. p is estimated 

by p̂ and hence Q̂y(p̂) is the estimator of Qy(p). M̂y can be 

regarded as the special estimator Q̂y(p̂) such that M̂y =

Q̂y(0.5). Kuk et al studied matrices of proportions 

pijx
y

, pijz
y

, and pijx
z , which are given in (Table 1).5 

With 𝑁 → ∞ under a super-population model, the 

distributions of the trivariate variables 𝑌, 𝑋, and 𝑍 become 

continuous distributions with marginal densities 𝑓𝑌(𝑦), 

𝑓𝑋(𝑥), and 𝑓𝑍(𝑧). Gross showed that the sample median 

𝑀̂𝑦 is consistent and asymptotically normal with mean 𝑀𝑦 

and asymptotic variance.3  

𝑉(𝑀̂𝑦) = (
1 − 𝑓

4𝑛
) (𝑓𝑌(𝑀𝑦))

−2
, 

where 𝑓 =
𝑛

𝑁
. When the distribution is moderately 

asymmetric, Doodson showed an empirical (also known as 

Karl Pearson) relationship between mean, median, and 

mode as Mode ≅ 3 × Median − 2 × Mean.2 

That is, 𝑌̃ ≅ 3𝑀𝑦 − 2𝑌̅, 𝑋̃ ≅ 3𝑀𝑥 − 2𝑋̅, and 𝑍 ≅ 3𝑀𝑧 −

2𝑍̅. The naive estimators for 𝑌̃, 𝑋̃, and 𝑍 based on the 



Kumar S et al. Int J Sci Rep. 2023 Oct;9(10):314-325 

                                                                   International Journal of Scientific Reports | October 2023 | Vol 9 | Issue 10    Page 316 

second-phase sample are given by 𝑦̃ ≅ 3𝑀̂𝑦 − 2𝑦̅, 𝑥̃ ≅

3𝑀̂𝑥 − 2𝑥̅, and 𝑧̃ ≅ 3𝑀̂𝑧 − 2𝑧̅. Based on the first-phase 

sample, we defined estimators for 𝑋̃ and 𝑍 as 𝑥̃′ ≅ 3𝑀̂𝑥
′ −

2𝑥̅′ and 𝑧̃′ ≅ 3𝑀̂𝑧
′ − 2𝑧̅′, where 𝑀̂𝑥

′  and 𝑀̂𝑧
′  are the sample 

medians based on the first-phase sample of the size 𝑛′. 

Table 2: Descriptive parameters of the generated dataset. 

Variables Mean Median Mode Minimum Maximum 
First 

quartile 

Third 

quartile 

Standard 

Deviation 

Study variable 

𝒀 
3.17 3.08 2.89 0.34 8.62 2.42 3.80 1.05 

Auxiliary 

variable 𝑿 
3.18 3.08 2.88 0.46 8.77 2.40 3.82 1.08 

Auxiliary 

variable 𝒁 
3.19 3.07 2.83 0.59 8.88 2.39 3.84 1.12 

We define indicator functions 𝐼𝑦𝑖
for 𝑌, 𝐼𝑥𝑖

 for 𝑋 and 𝐼𝑧𝑖
 

for 𝑍, such that 

𝐼𝑦𝑖
= {

1, if 𝑌𝑖 ≤ 𝑀𝑦

0, otherwise
, 𝐼𝑥𝑖

= {
1, if 𝑋𝑖 ≤ 𝑀𝑥

0, otherwise
 , and 𝐼𝑧𝑖

=

{
1, if 𝑍𝑖 ≤ 𝑀𝑧

0, otherwise
. 

The variance and covariance of naive estimators 𝑦̃, 𝑥̃, and 

𝑧̃ may be approximated as: 

𝑉(𝑦̃) ≅ (
1−𝑓

𝑛
) 𝑉̃𝑦

2 = (
1−𝑓

𝑛
) (

9

4
(𝑓𝑌(𝑀𝑦))

−2
+  4𝑆𝑦

2 +

 12𝑆𝑦𝑀𝑦
(𝑓𝑌(𝑀𝑦))

−1
)  

𝑉(𝑥̃) ≅ (
1−𝑓

𝑛
) 𝑉̃𝑥

2 = (
1−𝑓

𝑛
) (

9

4
(𝑓𝑋(𝑀𝑥))

−2
+  4𝑆𝑥

2 +

 12𝑆𝑥𝑀𝑥
(𝑓𝑋(𝑀𝑥))

−1
),  

V(𝑧̃) ≅ (
1−𝑓

𝑛
) 𝑉̃𝑧

2 = (
1−𝑓

𝑛
) (

9

4
(𝑓𝑍(𝑀𝑧))

−2
+ 4𝑆𝑧

2 +

12𝑆𝑧𝑀𝑧(𝑓𝑍(𝑀𝑧))
−1

),  

𝐶𝑜𝑣(𝑦,̃ 𝑥̃) ≅ (
1−𝑓

𝑛
) 𝑉̃𝑦𝑥 = (

1−𝑓

𝑛
) (9 (𝑓𝑋(𝑀𝑥) 𝑓𝑌(𝑀𝑦))

−1
(𝑃11 − 0.25) +

6𝑆𝑦𝑀𝑥
 (𝑓𝑋(𝑀𝑥) )−1 + 6𝑆𝑥𝑀𝑦

 (𝑓𝑌(𝑀𝑦) )
−1

+ 4𝑆𝑦𝑥)  

𝐶𝑜𝑣(𝑦,̃ 𝑧̃) ≅ (
1−𝑓

𝑛
) 𝑉̃𝑦𝑧 = (

1−𝑓

𝑛
) (9 (𝑓𝑍(𝑀𝑧)𝑓𝑌(𝑀𝑦))

−1
(𝑄11 − 0.25) +

6𝑆𝑦𝑀𝑧
(𝑓𝑍(𝑀𝑧))

−1
+ 6𝑆𝑧𝑀𝑦

(𝑓𝑌(𝑀𝑦))
−1

+ 4𝑆𝑦𝑧),   

𝐶𝑜𝑣(𝑧,̃ 𝑥̃) ≅ (
1−𝑓

𝑛
) 𝑉̃𝑧𝑥 = (

1−𝑓

𝑛
) (9(𝑓𝑋(𝑀𝑥) 𝑓𝑍(𝑀𝑧))

−1
(𝑃11 − 0.25) +

6𝑆𝑧𝑀𝑥
 (𝑓𝑋(𝑀𝑥))

−1
+ 6𝑆𝑥𝑀𝑧

(𝑓𝑍(𝑀𝑧))
−1

+ 4𝑆𝑧𝑥),   

𝑆𝑦𝑀𝑥
= (𝑁 − 1)−1  ∑ (𝑌𝑖 − 𝑌̅)(𝐼𝑥𝑖

− 0.5)𝑁
𝑖=1 , 𝑆𝑥𝑀𝑦

= (𝑁 −

1)−1 ∑ (𝑋𝑖 − 𝑋̅)(𝐼𝑦𝑖
− 0.5)𝑁

𝑖=1 , 𝑆𝑦𝑀𝑦
= (𝑁 − 1)−1 ∑ (𝑌𝑖 − 𝑌̅)(𝐼𝑦𝑖

−𝑁
𝑖=1

0.5),  𝑆𝑦𝑀𝑧
= (𝑁 − 1)−1  ∑ (𝑌𝑖 − 𝑌̅)(𝐼𝑧𝑖

− 0.5)𝑁
𝑖=1 , 𝑆𝑧𝑀𝑦

= (𝑁 −

1)−1 ∑ (𝑍𝑖 − 𝑍̅)(𝐼𝑦𝑖
− 0.5)𝑁

𝑖=1 , 𝑆𝑧𝑀𝑧
= (𝑁 − 1)−1 ∑ (𝑍𝑖 − 𝑍̅)(𝐼𝑧𝑖

−𝑁
𝑖=1

0.5),  𝑆𝑧𝑀𝑥
= (𝑁 − 1)−1  ∑ (𝑍𝑖 − 𝑍̅)(𝐼𝑥𝑖

− 0.5)𝑁
𝑖=1 , 𝑆𝑥𝑀𝑧

= (𝑁 −

1)−1 ∑ (𝑋𝑖 − 𝑋̅)(𝐼𝑧𝑖
− 0.5),𝑁

𝑖=1  and 𝑆𝑥𝑀𝑥
= (𝑁 − 1)−1  ∑ (𝑋𝑖 −𝑁

𝑖=1

𝑋̅) (𝐼𝑥𝑖
− 0.5). 

Lamichhane et al proposed a naive ratio estimator of 𝑌̃ 

using the two-phase sampling scheme as;7 

𝑡̃𝑟 =
𝑦̃

𝑥̃
𝑥̃′  

Similarly, a naive product estimator can be defined as 

𝑡̃𝑝 =
𝑦̃

𝑥̃′ 𝑥̃,  

Where the expressions for biases and mean square errors 

of the estimators 𝑡̃𝑟 and 𝑡̃𝑝 are given as: 

𝐵(𝑡̃𝑟) ≅ 𝑌̃ (
1

𝑛
−

1

𝑛′
) (

𝑉̃𝑥
2

𝑋̃2
−

𝑉̃𝑦𝑥

𝑋̃𝑌̃
) 

𝑀𝑆𝐸(𝑡̃𝑟) ≅ (
1

𝑛′
−

1

𝑁
) 𝑉̃𝑦

2

+ (
1

𝑛
−

1

𝑛′
) (𝑉̃𝑦

2 + 𝑅1
2𝑉̃𝑥

2 − 2𝑅1𝑉̃𝑦𝑥) 

𝐵(𝑡̃𝑝) ≅ (
1

𝑛
−

1

𝑛′
)

𝑉̃𝑦𝑥

𝑋̃
, 

𝑀𝑆𝐸(𝑡̃𝑝) ≅ (
1

𝑛′
−

1

𝑁
) 𝑉̃𝑦

2

+ (
1

𝑛
−

1

𝑛′
) (𝑉̃𝑦

2 + 𝑅1
2𝑉̃𝑥

2 + 2𝑅1𝑉̃𝑦𝑥) 

Where 𝑅1 =
𝑌̃

𝑋̃
 is the ratio of two population modes of 𝑌 

and 𝑋. Kumar et al studied naive ratio and product 

estimators under the two-phase sampling scheme for 

estimating the population mode using the information on a 

single auxiliary variable.6  

METHODS 

Proposed estimators and their properties 

Following Lamichhane and Singh7 and Chand1, we have 

suggested chain ratio and product estimators of the 

population mode 𝑌̃ of the study variable 𝑌 using two 

auxiliary variables 𝑋 and 𝑍 where 𝑋 is considered as the 
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main auxiliary variable and 𝑍, which is closer to 𝑋, as the 

additional auxiliary variable. 

𝑇̃𝑅 = 𝑦̃ (
𝑥̃′

𝑥̃
) (

𝑍̃

𝑧̃′)  

 𝑇̃𝑃 = 𝑦̃ (
𝑥̃

𝑥̃′) (
𝑧̃′

𝑍̃
) 

To obtain the properties of the suggested estimators, we 

defined 

𝑦̃ = 𝑌̃(1 + 𝜖0), 𝑥̃ = 𝑋̃(1 + 𝜖1), 𝑥̃′ = 𝑋̃(1 + 𝜖2), 𝑧̃′ =

𝑍(1 + 𝜖3), 
 
Where 𝐸(𝜖0) = 𝐸(𝜖1) = 𝐸(𝜖2) = 𝐸(𝜖3) = 0 
 
One can only see that: 

 

𝐸(𝜖0
2) = (

1

𝑛
−

1

𝑁
)

𝑉𝑦
2

𝑌̃2, 𝐸(𝜖1
2) = (

1

𝑛
−

1

𝑁
)

 𝑉𝑥
2

 𝑋̃2, 𝐸(𝜖2
2) =

(
1

𝑛′ −
1

𝑁
)

𝑉𝑥
2

 𝑋̃2, 𝐸(𝜖3
2) = (

1

𝑛′ −
1

𝑁
)

𝑉𝑧
2

𝑍̃2, 

𝐸(𝜖0𝜖1) = (
1

𝑛
−

1

𝑁
)

𝑉𝑦𝑥

𝑌̃𝑋̃
 , 𝐸(𝜖0𝜖2) = (

1

𝑛′ −
1

𝑁
)

𝑉𝑦𝑥

𝑌̃𝑋̃
, 

𝐸(𝜖0𝜖3) = (
1

𝑛′ −
1

𝑁
)

𝑉𝑦𝑧

𝑌̃𝑍̃
, 

𝐸(𝜖1𝜖2) = (
1

𝑛′ −
1

𝑁
)

 𝑉𝑥
2

 𝑋̃2, (𝜖1𝜖3) = (
1

𝑛′ −
1

𝑁
)

𝑉𝑥𝑧

𝑋̃𝑍̃
 , and 

𝐸(𝜖2𝜖3) = (
1

𝑛′ −
1

𝑁
)

𝑉𝑥𝑧

𝑋̃𝑍̃
, 

The expressions for biases and mean square errors of the 

proposed estimators 𝑇̃𝑅 and 𝑇̃𝑃 are given as 

𝐵(𝑇̃𝑅) ≅ 𝑌̃ ((
1

𝑛
−

1

𝑛′
) (

𝑉̃𝑥
2

𝑋̃2
−

𝑉̃𝑦𝑥

𝑋̃𝑌̃
) + (

1

𝑛′
−

1

𝑁
) (

 𝑉̃𝑧
2

𝑍̃2
−

𝑉̃𝑦𝑧

𝑌̃𝑍̃
))

= 𝐵(𝑡̃𝑟) + 𝑌̃ (
1

𝑛′
−

1

𝑁
) (

 𝑉̃𝑧
2

𝑍̃2
−

𝑉̃𝑦𝑧

𝑌̃𝑍̃
) 

𝑀𝑆𝐸(𝑇̃𝑅) ≅ (
1

𝑛′
−

1

𝑁
) 𝑉̃𝑦

2 + (
1

𝑛
−

1

𝑛′
) (𝑉̃𝑦

2 + 𝑅1
2𝑉̃𝑥

2 − 2𝑅1𝑉̃𝑦𝑥)

+ (
1

𝑛′
−

1

𝑁
) 𝑅2(𝑅2𝑉̃𝑧

2 − 2𝑉̃𝑦𝑧) 

≅ 𝑀𝑆𝐸(𝑡̃𝑟) + (
1

𝑛′
−

1

𝑁
) 𝑅2(𝑅2𝑉̃𝑧

2 − 2𝑉̃𝑦𝑧) 

𝐵(𝑇̃𝑃) ≅ (
1

𝑛
−

1

𝑛′
)

𝑉̃𝑦𝑥

𝑋̃
+ (

1

𝑛′
−

1

𝑁
)

𝑉̃𝑦𝑧

𝑍̃
= 𝐵(𝑡̃𝑃) + (

1

𝑛′
−

1

𝑁
)

𝑉̃𝑦𝑧

𝑍̃
 

𝑀𝑆𝐸(𝑇̃𝑃) ≅ (
1

𝑛′
−

1

𝑁
) 𝑉̃𝑦

2 + (
1

𝑛
−

1

𝑛′
) (𝑉̃𝑦

2 + 𝑅1
2𝑉̃𝑥

2 + 2𝑅1𝑉̃𝑦𝑥)

+ (
1

𝑛′
−

1

𝑁
) 𝑅2(2𝑉̃𝑦𝑧 + 𝑅2𝑉̃𝑧

2) 

≅ MSE(𝑡̃𝑝) + (
1

𝑛′
−

1

𝑁
) 𝑅2(2𝑉̃𝑦𝑧 + 𝑅2𝑉̃𝑧

2), 

Where 𝑅2 =
𝑌̃

𝑍̃
, is the ratio of two population modes of 𝑌 

and 𝑍. 
 

Comparison of estimators  

In this section, conditions for which the proposed 

estimators have lower mean square errors than the other 

relevant estimators are obtained. 

𝑀𝑆𝐸(𝑇̃𝑅) ≤ 𝑉(𝑦̃), 𝐾 ≥
1

2
(1 +

𝑓1𝑅2

𝑅1
2𝑉̃𝑥

2
(𝑅2 𝑉̃𝑧

2 − 2𝑉̃𝑦𝑧)), 

𝑀𝑆𝐸(𝑇̃𝑅) ≤ 𝑀𝑆𝐸(𝑡̃𝑟) if 𝑉̃𝑦𝑧 ≥
1

2
(𝑅2𝑉̃𝑧

2), 

𝑀𝑆𝐸(𝑇̃𝑃) ≤ 𝑉(𝑦̃) if 𝐾 ≤ −
1

2
(1 +

𝑓1𝑅2

𝑅1
2𝑉𝑥

2 (𝑅2 𝑉̃𝑧
2 +

2𝑉̃𝑦𝑧)) 𝑎𝑛𝑑 𝑀𝑆𝐸(𝑇̃𝑃) ≤ 𝑀𝑆𝐸(𝑡̃𝑝) if 𝑉̃𝑦𝑧 ≤ −
1

2
𝑅2𝑉̃𝑧

2 

Where = 𝜌𝑦̃𝑥̃

𝐶𝑦̃

𝐶𝑥̃
 , 𝑓1 =

(
1

𝑛′−
1

𝑁
)

(
1

𝑛
−

1

𝑛′)
, 𝑉̃𝑦𝑥, and 𝑉̃𝑦𝑧 are covariance 

terms. 

A simulation study with a generated dataset 

In this section, we have performed a simulation study with 

one generated dataset (considered as a population). We 

generated an artificial dataset by assuming the size 𝑁 =
 5000 of independent Gamma variables 𝑍𝑖 ∼
𝐺(𝑁, 8.00, 2.50). We estimated the main auxiliary 

variable 𝑋𝑖 = 0.15 + 0.90𝑍𝑖 + 0.20𝑒1, where 𝑒1 ∼
𝑁(0,1). Finally, we estimated the study variable using a 

linear relation 𝑌𝑖 = 0.15 + 0.90𝑋𝑖 + 0.20𝑒2 where 𝑒2 ∼
𝑁(0,1) . The fitted distributions of the study and the 

auxiliary variables are given in Figure 1 (a) for the 

generated dataset, and we obtained the parametric 

estimates of Gamma distribution for the study and the 

auxiliary variables. We also calculated various descriptive 

parameters of the study and the auxiliary variables in Table 

2. The correlation coefficients among the study and the 

auxiliary variables are 𝜌𝑦𝑥 = 0.99, 𝜌𝑦𝑧 = 0.96, and 𝜌𝑥𝑧 =

0.98 for the dataset, which are quite good for our study. 

The value of 𝑝11𝑥
𝑦

= 0.470, 𝑝11𝑧
𝑦

= 0.462, and 𝑝11𝑧
𝑥 =

0.472 for the data set are also observed. The correlation 

coefficients among sample modes are 𝜌𝑦̃𝑥̃ = 0.76, 𝜌𝑦̃𝑧̃ =

0.54, and 𝜌𝑥̃𝑧̃ = 0.74 for the dataset. The relative 

efficiencies (REs) of the estimators with respect to the 

naive estimator of the population mode are calculated as: 

𝑅𝐸(𝑦̃) =
𝑉(𝑦̃)

𝑉(𝑦̃)
× 100%, 𝑅𝐸(𝑡̃𝑟) =

𝑉(𝑦̃)

𝑀𝑆𝐸(𝑡̃𝑟)
× 100%, and 

𝑅𝐸(𝑇̃𝑅) =
𝑉(𝑦̃)

𝑀𝑆𝐸(𝑇̃𝑅)
× 100% 

In our case, the subsequent sampling scheme is simple 

random sampling without replacement, so the possible 

number of samples is 𝑁𝐶𝑛
, which is too large. So, we 

selected 𝑀 = 10,000 samples randomly, each of the size 

𝑛. We computed simulated mean square errors, simulated 

biases (Bs), simulated relative efficiencies (REs), and 

ratios (R) of approximate expressions of mean square 

errors to the simulated mean square errors in (Table 3) for 

different sizes of the second-phase sample 𝑛 =
90, 180, 360, 540, 900, and 1800 at the fixed size 𝑛′ =
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3450 of the first-phase sample. We have shown simulated 

mean square errors and biases through graphical 

representations in (Figure 1). 

 

Figure 1: (a) Parameter values for the generated 

dataset, (b) simulated values of mean square errors 

and biases of the estimators for generated dataset. 

 

The simulated mean square errors of the estimators of the 

population mode are given as: 

 

𝑀𝑆𝐸(𝑦̃) =
1

𝑀
∑ (𝑦̃|𝑘 − 𝑌̃)

2
,

𝑀

𝑘=1
MSE(𝑡̃𝑟)

=
1

𝑀
∑ (𝑡̃𝑟|𝑘 − 𝑌̃)

2𝑀

𝑘=1
 

𝑀𝑆𝐸(𝑇̃𝑅) =
1

𝑀
∑ (𝑇̃𝑅|𝑘 − 𝑌̃)

2
.

𝑀

𝑘=1
 

The simulated relative efficiencies of the estimators with 

respect to the naive estimator of the population mode are 

given as: 

𝑅𝐸(𝑦̃) =
∑ (𝑦̃|𝑘−𝑌̃)

2𝑀
𝑘=1

∑ (𝑦̃|𝑘−𝑌̃)
2𝑀

𝑘=1

× 100% , (𝑡̃𝑟) =
∑ (𝑦̃|𝑘−𝑌̃)

2𝑀
𝑘=1

∑ (𝑡̃𝑟|𝑘−𝑌̃)
2𝑀

𝑘=1

×

100% 𝑅𝐸(𝑇̃𝑅) =
∑ (𝑦̃|𝑘−𝑌̃)

2𝑀
𝑘=1

∑ (𝑇̃𝑅|𝑘−𝑌̃)
2𝑀

𝑘=1

× 100%. 

 

The simulated biases of the estimators 𝑇̃𝑅, 𝑡̃𝑟, and 𝑦̃ are 

given as: 

 

𝐵(𝑦̃) =
1

𝑀
∑ (𝑦̃|𝑘 − 𝑌̃)𝑀

𝑘=1 , 𝐵(𝑡̃𝑟) =
1

𝑀
∑ (𝑡̃𝑟|𝑘 − 𝑌̃),𝑀

𝑘=1  

and 𝐵(𝑇̃𝑅) =
1

𝑀
∑ (𝑇̃𝑅|𝑘 − 𝑌̃)𝑀

𝑘=1  

For the investigations of how far approximate variances 

are from the simulated mean square errors, we computed 

the three ratios (𝑅) for generated data set given as: 

 

R(𝑦̃) =
V(𝑦̃)

1

𝑀
∑ (𝑦̃|𝑘−𝑌̃)

2𝑀
𝑖=1

 R(𝑡̃𝑟) =
MSE(𝑡̃𝑟)

1

𝑀
∑ (𝑡̃𝑟|𝑘−𝑌̃)

2𝑀
𝑖=1

, R(𝑇̃𝑅) =

MSE(𝑇̃𝑅)
1

𝑀
∑ (𝑇̃𝑅|𝑘−𝑌̃)

2𝑀
𝑖=1

. 

RESULTS 

From (Table 3, Figure 1b) we observe that the values of 

mean square errors of the suggested ratio estimator are less 

than Lamichhane et al ratio estimator and naive estimator.7 

Also, the mean square errors decrease when the second-

phase sample size increases. The values of biases of the 

estimators are very low and close to zero. The ratios of the 

exact mean square errors to the simulated mean square 

errors are close to one, indicating that simulated mean 

square errors are approximately close to exact mean square 

errors. It means that exact mean square errors can also be 

used as simulated mean square errors. In (Table 3) we also 

computed the exact values of mean square errors and exact 

biases. The values of mean square errors of the suggested 

chain ratio estimator are less than that of other than 

Lamichhane and Singh7 ratio estimator and naive 

estimator.  

An application 

To validate the theoretical conclusions with a real dataset, 

we have taken a dataset from the Department of 

Agriculture, United States.9 This dataset was collected 

during the years 2003-2008. This dataset represents the 

price (US $)/centum weight (Cwt) of sweet corn in the year 

2005 as the study variable 𝑌, the price (US $)/Cwt of sweet 

corn in the year 2004 as the main auxiliary variable 𝑋, and 

price (US $)/Cwt of sweet corn in the year 2003 as the 

additional auxiliary variable 𝑍. The correlation 

coefficients among the study and the auxiliary variables 

are 𝜌𝑦𝑥 = 0.95, 𝜌𝑦𝑧 = 0.92, and 𝜌𝑥𝑧 = 0.93 for the data 

set, which are acceptable for our study. We also observe 

that the value of 𝑝11𝑥
𝑦

= 0.48, 𝑝11𝑧
𝑦

= 0.41, and 𝑝11𝑧
𝑥 =

0.41. The correlation coefficients among sample modes 

are 𝜌𝑦̃𝑥̃ = 0.87, 𝜌𝑦̃𝑧̃ = 0.51, and 𝜌𝑥̃𝑧̃ = 0.55 for the 

dataset. We calculated various descriptive parameters of 

the study and the auxiliary variables listed in (Table 4). We 

fitted an exponential distribution, a Gamma distribution, 

and a Weibull distribution to each of the variables used in 

this study, which are given in (Figure 2a) shows that the 

Gamma distribution gives the best fit for the dataset, and  

we approximately get that 

𝑌𝑖~𝐺(14.56, 1.71),  𝑋𝑖~𝐺(10.38, 2.21), and 

𝑍𝑖~𝐺(10.39, 2.14).  
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Table 3: Simulated and exact values of the estimators for different values of 𝒏 at the fixed first-phase sample size 

𝒏′ = 𝟑𝟒𝟓𝟎 for the generated dataset. 

Simulated values of the estimators 

Parameters 
Second-phase sample size  

90 180 360 540 900 1800 

Relative efficiency of proposed estimator 𝑻̃𝑹 225 189 204 218 215 192 

Mean square error of proposed estimator 𝑻̃𝑹  0.035 0.017 0.010 0.005 0.003 0.001 

Bias of proposed estimator 𝑻̃𝑹  0.012 -0.007 -0.010 -0.003 0.009 0.021 

Ratios of the exact mean square error to the simulated mean square 

error of proposed estimator 𝑻̃𝑹  
1.09 1.09 0.95 1.18 1.25 1.02 

Relative efficiency of Lamichhane and Singh7 estimator 𝒕̃𝒓 203 158 178 162 160 139 

Mean square error of Lamichhane and Singh7 estimator 𝒕̃𝒓 0.039 0.021 0.011 0.007 0.004 0.002 

Bias of Lamichhane and Singh7 estimator 𝒕̃𝒓 0.055 0.053 -0.040 0.039 0.031 0.031 

Ratios of the exact mean square error to the simulated mean square 

error of Lamichhane and Singh7 estimator 𝒕̃𝒓 
0.98 0.92 0.85 0.91 0.99 0.85 

Relative efficiency of naive estimator 𝒚̃ 100 100 100 100 100 100 

Variance of naive estimator 𝒚̃ 0.078 0.032 0.019 0.011 0.006 0.003 

Bias of naive estimator 𝒚̃ 0.041 0.045 -0.053 0.037 0.028 0.032 

Ratios of the exact variance to the simulated variance of naive 

estimator 𝒚̃ 
0.95 1.13 0.91 1.06 1.11 0.97 

Exact values of the estimators                                                          Second-phase sample size 
 90 180 360 540 900 1800 

Relative efficiency of proposed estimator 𝑻̃𝑹 197 197 196 195 192 183 

Mean square error of proposed estimator 𝑻̃𝑹  0.038 0.019 0.009 0.006 0.003 0.001 

Bias of proposed estimator 𝑻̃𝑹  0.007 0.004 0.002 0.001 0.001 0.000 

Relative efficiency of Lamichhane and Singh7 estimator 𝒕̃𝒓 196 195 191 188 181 159 

Mean square error of Lamichhane and Singh7 estimator 𝒕̃𝒓 0.038 0.019 0.009 0.006 0.003 0.002 

Bias of Lamichhane and Singh7 estimator 𝒕̃𝒓 0.007 0.004 0.002 0.001 0.001 0.000 

Relative efficiency of naive estimator 𝒚̃ 100 100 100 100 100 100 

Variance of naive estimator 𝒚̃ 0.075 0.037 0.018 0.011 0.006 0.002 

Bias of naive estimator 𝒚̃ 0 0 0 0 0 0 

Table 4: Various descriptive parameters for the real dataset. 

Variables Mean Median Mode Minimum Maximum 
First 

quartile 

Third 

quartile 

Standard 

Deviation 

Study variable 

𝒀 
24.88 22.20 16.83 13.70 41.50 20.10 28.00 6.98 

Auxiliary 

Variable 𝑿 
22.91 20.80 16.57 11.70 42.00 18.40 27.00 7.62 

Auxiliary 

variable 𝒁 
22.28 20.60 17.23 9.10 42.00 17.00 25.00 7.27 

With the help of this real dataset, we have carried out a 

simulation study using R software. In our case, the 

sampling scheme used is simple random sampling without 

replacement, so the possible number of samples is 𝑁𝐶𝑛
, 

which is too large. So, we selected 𝑀 = 10,000 samples 

randomly, each of the size 𝑛. In Table 5, we computed 

simulated mean square errors using Eq. (34), simulated 

biases using Eq. (31), and simulated relative efficiencies 

using Eq. (35) of approximate expressions of mean square 

errors to the simulated mean square errors for different 

sizes of the second-phase sample  and  at the fixed size  of 

the first-phase sample. We have shown simulated mean 

square errors and biases through graphical representations 

in Figure 2 (b), we note that the mean square errors and 

biases of the proposed estimator 𝑇̃𝑅 are lower than those of 

the relevant estimators 𝑡̃𝑟 and 𝑦̃. Hence, the proposed chain 

ratio estimator is more efficient than the than Lamichhane 

and Singh7 ratio estimator and naive estimator. 
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Table 5: Simulated values of the estimators for different values of 𝒏 at the fixed first-phase sample size 𝒏′ = 𝟐𝟎 for 

the real dataset. 

 

Second-phase 

sample size 𝒏 

Naive estimator 𝒚̃  
Lamichhane and Singh7 

     estimator 𝒕̃𝒓 
Proposed estimator 𝑻̃𝑹 

Relative 

efficiency 

Mean 

square 

error 

Bias 
Relative 

efficiency 

Mean 

square 

error 

Bias 
Relative 

efficiency 

Mean 

square 

error 

Bias 

5 100 40.03 3.31 128 31.20 2.67 135 29.72 2.47 

10 100 13.78 2.92 155 8.88 1.98 165 8.34 1.85 

14 100 7.07 2.22 131 5.40 1.94 166 4.25 1.63 

Confidence interval 

The 100 (1 − 𝛼)% confidence intervals based on 

simulated estimates of the estimators 𝑇̃𝑅, 𝑡̃𝑟 , and 𝑦̃ are 

given by: 

𝑇̃𝑅 ± 𝑡(𝑛−1)(𝛼/2)(MSE(𝑇̃𝑅))
1/2

, 𝑡̃𝑟 ± 𝑡(𝑛−1)(𝛼/

2)(MSE(𝑡̃𝑟))1/2 

𝑦̃ ± 𝑡(𝑛−1)(𝛼/2)(V(𝑦̃))
1/2

 

 

Where 𝑡(𝑛−1)(𝛼/2) is the value of the 𝑡-variate at (𝑛 − 1) 

degrees of freedom for a 95% level of confidence 

coefficient. We calculated 95% simulated confidence 

intervals of the estimated value for different values of 𝑛 =
90, 180, 360, 540, 900, and 1800 at the fixed size 𝑛′ =
3450 for the generated dataset, and for 𝑛 = 5, 10, and 14 

at the fixed size 𝑛′ = 20 for the real dataset. For the 

generated dataset, the simulated as well as exact 

confidence intervals, percent coverage of the estimates, 

simulated estimates, and quartiles of the estimators 𝑇̃𝑅 , 𝑡̃𝑟 , 
and 𝑦̃ are calculated and given in (Table 6) and simulated 

values of confidence interval is presented graphically in 

(Figure 3a). For the real dataset, the simulated confidence 

intervals, percent coverage of the estimates, simulated 

estimates, and quartiles of the estimators 𝑇̃𝑅 , 𝑡̃𝑟 , and 𝑦̃ are 

calculated in (Table 6) and graphically presented in 

(Figure 3b). From (Table 6, Figures 3a and b), we observe 

that the proposed chain ratio estimator has a shorter 

confidence interval and more percent coverage than the 

than Lamichhane et al ratio estimator and naive estimator 

of population mode.7 If we increase the sample size, the 

confidence intervals of the estimates become shorter.  

Study to determine of 𝒏′ and 𝒏 for fixed cost 𝑪 ≤ 𝑪𝟎 

In practical applications, the cost aspect should also be 

taken into account. So, we define 𝐶0 to be the total cost, 

i.e., fixed of the survey apart from overhead cost. The 

expected total cost of the survey, apart from the overhead 

cost, is given by a cost function: 

𝐶 = (𝐶1
′ + 𝐶2

′)𝑛′ + 𝑛𝐶1,  

Where 𝐶1
′ = The cost per unit of identifying and observing 

the main auxiliary variable 𝑥 at the first-phase, 𝐶2
′  = The 

cost per unit of identifying and observing additional 

auxiliary variable 𝑧 at the first-phase, and 

𝐶1 = The cost per unit of mailing the questionnaire/visiting 

the unit in the second-phase. The expression for 𝑀𝑆𝐸(𝑇𝑖), 

𝑖 = 1,2,3 can be written as follows: 

𝑀𝑆𝐸(𝑇𝑖) =
𝑉0𝑖

𝑛
+

𝑉1𝑖

𝑛′ +  independent terms from 𝑛′ and 𝑛; 𝑖 = 1, 2, 3,   

Where 𝑇1 = 𝑦̃, 𝑇2 = 𝑡̃𝑟 , 𝑇3 = 𝑇̃𝑅 and 𝑉0𝑖,𝑉1𝑖 are the 

coefficient of the terms of 
1

𝑛
 and 

1

𝑛′ respectively in the 

expression of 𝑀𝑆𝐸(𝑇𝑖), 𝑖 = 1,2,3. We consider 𝜓 to be the 

function as follows:  

 

𝜓 = 𝑀𝑆𝐸(𝑇𝑖) + 𝜆𝑖((𝐶1
′ + 𝐶2

′)𝑛′ + 𝑛𝐶1) 

 

Where 𝜆𝑖 is a Lagrange’s multiplier. Differentiating 𝜓 

with respect to 𝑛′ and 𝑛 and equating them to zero, we 

obtained 

𝑛′ = √
𝑉1𝑖

𝜆𝑖(𝐶1
′+𝐶2

′)
 , 

𝑛 = √
𝑉0𝑖

𝜆𝑖𝐶1
 

We know that 𝑛′ > 𝑛 so, we have 𝐶1
′ + 𝐶2

′ <
𝑉1𝑖𝐶1

𝑉0𝑖
. 

 

Substituting the values of 𝑛′ and 𝑛 from above equations 

then we have, 

 

√𝜆𝑖 =
1

𝐶0
(√(𝐶1

′ + 𝐶2
′)𝑉1𝑖 + √𝐶1𝑉0𝑖) 

It has been observed that the determinant of the matrix of 

the second-order derivative of 𝜓 with respect to 𝑛′ and 𝑛 

is negative for the optimum values of 𝑛′ and 𝑛, which 

shows that the solution for 𝑛′ and 𝑛 given by above 

equations for 𝐶 ≤ 𝐶0 minimizes MSE(𝑇𝑖). The minimum 

value of MSE (𝑇𝑖) for the optimum value of 𝑛′ and 𝑛 are 

given by: 

𝑀𝑆𝐸(𝑇𝑖) =
1

𝐶0
(√(𝐶1

′ + 𝐶2
′)𝑉1𝑖 + √𝐶1𝑉0𝑖)

2

−
1

𝑁
(𝑉̃𝑦

2 + 𝑅2
2𝑉̃𝑧

2 − 2𝑅2𝑉̃𝑦𝑧) 
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Study to determine of 𝒏′ and 𝒏 for a fixed variance 𝑽 =
𝑽𝟎 

 

We define 𝑉0 be the variance of the estimator 𝑇(𝑖), 𝑖 =

1,2,3 in advance, then we have: 

 

𝑉0 =
𝑉0𝑖

𝑛
+

𝑉1𝑖

𝑛′
−

1

𝑁
(𝑉̃𝑦

2 + 𝑅2
2𝑉̃𝑧

2 − 2𝑅2𝑉̃𝑦𝑧) 

 

 

Figure 2: (a) Parameter values of the variables for the 

real dataset (b) Simulated values of mean square 

errors and biases of the estimators for different values 

of 𝒏 at the fixed 𝒏′ = 𝟐𝟎 for the real dataset. 

The total cost, apart from the overhead cost, is minimized 

by obtaining the optimum values of 𝑛′ and 𝑛 for specified 

precision 𝑉 = 𝑉0. For this purpose, we defined a function 

𝜙 which is given as follows: 

𝜙 = (𝐶1
′ + 𝐶2

′)𝑛′ + 𝐶1𝑛 + 𝜇𝑖(𝑀𝑆𝐸(𝑇𝑖) − 𝑉0), 
 

Where 𝑖 = 1,2,3, and 𝜇𝑖 is a Lagrange’s multiplier. After 

differentiating 𝜙 with respect to 𝑛′ and 𝑛 and equating 

them to zero, we get, 

𝑛′ = √
𝑉1𝑖𝜇𝑖

(𝐶1
′+𝐶2

′)
 , 

𝑛 = √
𝑉0𝑖𝜇𝑖

𝐶1
 

Substituting the values of 𝑛′ and 𝑛 from Eq. (48) and (49), 

we get 

 

√𝜇𝑖 =
1

𝑉0+
1

𝑁
(𝑉𝑦

2+𝑅2
2𝑉𝑧

2−2𝑅2𝑉𝑦𝑧)
(√𝑉0𝑖𝐶1 + √𝑉1𝑖(𝐶1

′ + 𝐶2
′))  

 

It has also been seen that the determinant of the matrix of 

a second-order derivative of 𝜙 with respect to 𝑛′ and 𝑛 is 

negative for the optimum values of 𝑛′ and 𝑛, which shows 

that the solution for 𝑛′, 𝑛 given by Eq. (48) and (49). 

Putting the values of √𝜇𝑖 from Eq. (50) in Eq. (48) and 

(49), we can obtain the value of 𝑛′ and 𝑛 for which the 

estimator MSE(𝑇𝑖), 𝑖 = 1,2,3 attains the variance 𝑉0 with 
the expected cost given by 

𝐶(𝑡𝑖) =
1

𝑉0 +
1

𝑁
(𝑉̃𝑦

2 + 𝑅2
2𝑉̃𝑧

2 − 2𝑅2𝑉̃𝑦𝑧)
(√𝑉0𝑖𝐶1

+ √𝑉1𝑖(𝐶1
′ + 𝐶2

′))
2

 

 

From (Table 7), for both the datasets, we observe that for 

the fixed cost, the suggested chain ratio estimator 𝑇̃𝑅 shows 
the least mean square error in comparison to the than 

Lamichhane and Singh7 ratio estimator 𝑡̃𝑟 and naive 

estimator 𝑦̃. Also, for the specified variance, 𝑇̃𝑅 has the 
lowest cost in comparison to the cost of the other 

estimators 𝑡̃𝑟 and 𝑦̃.  

DISCUSSION 

We formed chain ratio and product estimators for the 
population mode using two types of auxiliary information 
under the two-phase sampling scheme. We supported 
theoretical outcome through a simulation study. On the 
basis of simulated results, from (Table 3, Figure 1b), we 
observe that the values of mean square errors of the 
suggested ratio estimator are less than Lamichhane et al 

ratio estimator and naive estimator.7 Also, the mean square 
errors decrease when the second-phase sample size 
increases.  

The values of biases of the estimators are very low and 
close to zero. The ratios of the exact mean square errors to 
the simulated mean square errors are close to one, 
indicating that simulated mean square errors are 
approximately close to exact mean square errors. It means 
that exact mean square errors can also be used as simulated 
mean square errors. In (Table 3), we also computed the 
exact values of mean square errors and exact biases. The 
values of mean square errors of the suggested chain ratio 
estimator are less than that of other than Lamichhane et al 
ratio estimator and naive estimator.7  

In Table 5, we computed simulated mean square errors 
using Eq. (34), simulated biases using Eq. (31), and 
simulated relative efficiencies using Eq. (35) of 
approximate expressions of mean square errors to the 
simulated mean square errors for different sizes of the 

second-phase sample 𝑛 = 5, 10, and 14 at the fixed size 

𝑛′ = 20 of the first-phase sample. We have shown 
simulated mean square errors and biases through graphical 
representations in (Figure 2b). From (Table 5, Figure 2b), 
we note that the mean square errors and biases of the 
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proposed estimator 𝑇̃𝑅 are lower than those of the relevant 

estimators 𝑡̃𝑟 and 𝑦̃.  

Hence, the proposed chain ratio estimator is more efficient 
than the than Lamichhane and Singh7 ratio estimator and 

naive estimator. From (Table 6, Figures 3 a and b) we 
observe that the proposed chain ratio estimator has a 
shorter confidence interval and more percent coverage 
than the than Lamichhane et al ratio estimator and naive 
estimator of population mode.7  

Table 6: Simulated and exact confidence interval and its estimates of the estimators at different sizes of the second-

phase sample at the fixed first-phase sample sizes for the generated dataset and the real dataset. 

Simulated results for the generated dataset 

Estimators 
Lower 

Limit 

Upper 

Limit 

Coverage 

percent 

Simulated 

estimates 

Standard 

deviation 

Lower 

Quartile 

Me

dian 

Upper 

Quartile 

𝒀̃ = 𝟐. 𝟖𝟗, 𝒏′ = 𝟑𝟒𝟓𝟎 

Second-phase sample size n=90 

Proposed 

estimator  𝑻̃𝑹 
2.67 3.15 95.45 2.91 0.19 2.78 2.90 3.02 

Lamichhane and 

Singh7 𝒕̃𝒓 
2.70 3.20 94.45 2.95 0.19 2.82 2.94 3.07 

Naive estimator 𝒚̃ 2.57 3.31 81.84 2.94 0.28 2.76 2.94 3.12 

Second-phase sample size n =180 

Proposed 

estimator  𝑻̃𝑹 
2.72 3.06 90.80 2.89 0.13 2.80 2.88 2.97 

Lamichhane and 

Singh7 𝒕̃𝒓 
2.76 3.14 92.54 2.95 0.13 2.86 2.94 3.04 

Naive estimator 𝒚̃ 2.71 3.18 82.42 2.94 0.17 2.83 2.95 3.05 

Second-phase sample size n=𝟑𝟔𝟎 

Proposed 

estimator  𝑻̃𝑹 
2.76 3.02 91.14 2.89 0.10 2.82 2.88 2.95 

Lamichhane and 

Singh7 𝒕̃𝒓 
2.72 3.00 93.70 2.86 0.10 2.79 2.85 2.92 

Naive estimator 𝒚̃ 2.66 3.03 83.91 2.84 0.13 2.76 2.85 2.93 

Second-phase sample size n=𝟓𝟒𝟎 

Proposed 

estimator  𝑻̃𝑹 
2.80 2.99 91.47 2.89 0.07 2.85 2.89 2.94 

Lamichhane and 

Singh7 𝒕̃𝒓 
2.83 3.04 95.00 2.94 0.07 2.89 2.93 2.98 

Naive estimator 𝒚̃ 2.80 3.07 84.79 2.93 0.10 2.87 2.93 3.00 

Second-phase sample size n=900 

Proposed 

estimator  𝑻̃𝑹 
2.84 2.97 94.20 2.91 0.05 2.87 2.90 2.94 

Lamichhane and 

Singh7  𝒕̃𝒓 
2.85 3.00 95.13 2.93 0.05 2.89 2.93 2.96 

Naive estimator 𝒚̃ 2.83 3.02 85.01 2.93 0.07 2.88 2.92 2.97 

Second-phase sample size n=𝟏𝟖𝟎𝟎 

Proposed 

estimator  𝑻̃𝑹 
2.87 2.97 96.35 2.92 0.02 2.90 2.92 2.94 

Lamichhane and 

Singh7  𝒕̃𝒓 
2.87 2.99 97.35 2.93 0.02 2.91 2.93 2.95 

Naive estimator 𝒚̃ 2.86 3.00 90.99 2.93 0.03 2.90 2.93 2.95 

Exact results for the generated dataset 

Estimator Lower limit  Upper limit Estimated value U-L 

Second-phase sample size n=𝟗𝟎 

Proposed estimator  𝑻̃𝑹 2.53 3.17 2.85 0.64 

Lamichhane and Singh7 𝒕̃𝒓 2.50 3.15 2.83 0.65 

Naive estimator 𝒚̃ 2.35 3.26 2.81 0.91 

 

 

 
Continued.  
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Simulated results for the generated dataset 

Estimator 
Lower  

Limit 

Upper  

Limit 

Estimated  

value 
U-L 

Second-phase sample size n=𝟏𝟖𝟎    

Proposed estimator  𝑻̃𝑹 2.72 3.17 2.95 0.45 

Lamichhane and Singh7 𝒕̃𝒓 2.74 3.20 2.97 0.46 

Naive estimator 𝒚̃ 2.69 3.33 3.01 0.64 

Second-phase sample size n=𝟑𝟔𝟎 

Proposed estimator  𝑻̃𝑹 2.77 3.08 2.93 0.31 

Lamichhane and Singh7 𝒕̃𝒓 2.78 3.10 2.94 0.32 

Naive estimator 𝒚̃ 2.66 3.09 2.88 0.43 

Second-phase sample size n=𝟓𝟒𝟎 

Proposed estimator  𝑻̃𝑹 2.73 2.98 2.85 0.25 

Lamichhane and Singh7 𝒕̃𝒓 2.74 3.00 2.87 0.26 

Naive estimator 𝒚̃ 2.70 3.05 2.87 0.35 

Second-phase sample size n=𝟗𝟎𝟎 

Proposed estimator  𝑻̃𝑹 2.79 2.98 2.89 0.19 

Lamichhane and Singh7 𝒕̃𝒓 2.77 2.97 2.87 0.20 

Naive estimator 𝒚̃ 2.71 2.97 2.84 0.26 

Second-phase sample size n=𝟏𝟖𝟎𝟎 

Proposed estimator  𝑻̃𝑹 2.81 2.93 2.87 0.12 

Lamichhane and Singh7 𝒕̃𝒓 2.83 2.96 2.90 0.13 

Naive estimator 𝒚̃ 2.77 2.94 2.85 0.17 

Second-phase sample size n=𝟓 

 
Lower  

Limit 

Upper 

Limit 

Coverage 

percent 

Simulated 

estimates 

Standard 

deviation 

Lower 

quartile 

Median Upper quartile 

𝐘̃ = 𝟏𝟔. 𝟖𝟑, 𝒏′ = 𝟐𝟎       

Second-phase sample size n=5       

Proposed estimator  𝑻̃𝑹 12.86 23.89 98.65 18.38 3.62 16.24 17.87 19.70 

Lamichhane and Singh7 

𝒕̃𝒓 
12.27 27.91 98.55 20.09 3.96 17.75 19.53 21.53 

Naive estimator 𝒚̃ 10.93 31.26 96.15 21.09 4.98 17.80 21.10 22.78 

Second-phase sample size n=𝟏𝟎 

Proposed estimator  𝑻̃𝑹 14.70 22.69 98.10 18.70 2.21 17.31 18.40 19.78 

Lamichhane and Singh7 

𝒕̃𝒓 
14.66 22.97 97.95 18.82 2.23 17.43 18.52 19.91 

Naive estimator 𝒚̃ 14.07 25.44 98.90 19.75 2.30 18.10 19.72 21.28 

Second-phase sample size n=𝟏𝟒 

Proposed estimator  𝑻̃𝑹 15.40 21.55 99.50 18.48 1.25 17.73 18.41 19.22 

Lamichhane and Singh7 

𝒕̃𝒓 
15.23 22.33 99.50 18.78 1.27 18.02 18.71 19.53 

Naive estimator 𝒚̃ 15.03 23.09 99.60 19.06 1.46 17.91 19.02 20.07 

 

Table 7: REs in percent of the estimators with respect to 𝒚̃ for the fixed cost 𝑪 ≤ 𝑪𝟎 and expected cost of the 

different estimators for a specified variance 𝑽 = 𝑽𝟎 for the generated and the real datasets. 

Estimators 

For generated dataset 

Fixed cost 𝑪𝟎 = 𝐑𝐬. 𝟏𝟎𝟎. 𝟎𝟎 Fixed Variance 𝑽𝟎 = 𝟎. 𝟎𝟓 

𝐂𝐨𝐬𝐭 𝑪𝟏 = 𝐑𝐬. 𝟐. 𝟎𝟎, 𝐜𝐨𝐬𝐭 𝑪𝟏
′ = 𝐑𝐬. 𝟎. 𝟏𝟎,      

𝐚𝐧𝐝 𝐜𝐨𝐬𝐭 𝑪𝟐
′ = 𝐑𝐬. 𝟎. 𝟏𝟓 

  𝐂𝐨𝐬𝐭 𝑪𝟏 = 𝐑𝐬. 𝟐. 𝟎𝟎, 𝐜𝐨𝐬𝐭 𝑪𝟏
′ =  𝐑𝐬.  

   𝟎. 𝟏𝟎, 𝐚𝐧𝐝 𝐜𝐨𝐬𝐭 𝑪𝟐
′ = 𝐑𝐬. 𝟎. 𝟏𝟓   

First-phase 

sample size  

Second-phase 

sample size 

Relative 

efficiency 

(Mean SE) 

First-phase 

sample size  

Second-

phase 

sample size 

Cost 

Proposed 

estimator  𝑻̃𝑹 
66 42 139 (0.098) 128 81 194.67  

Continued.  
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Estimators 

For generated dataset 

Fixed cost 𝑪𝟎 = 𝐑𝐬. 𝟏𝟎𝟎. 𝟎𝟎 Fixed Variance 𝑽𝟎 = 𝟎. 𝟎𝟓 

𝐂𝐨𝐬𝐭 𝑪𝟏 = 𝐑𝐬. 𝟐. 𝟎𝟎, 𝐜𝐨𝐬𝐭 𝑪𝟏
′ = 𝐑𝐬. 𝟎. 𝟏𝟎,      

𝐚𝐧𝐝 𝐜𝐨𝐬𝐭 𝑪𝟐
′ = 𝐑𝐬. 𝟎. 𝟏𝟓 

  𝐂𝐨𝐬𝐭 𝑪𝟏 = 𝐑𝐬. 𝟐. 𝟎𝟎, 𝐜𝐨𝐬𝐭 𝑪𝟏
′ =  𝐑𝐬.  

   𝟎. 𝟏𝟎, 𝐚𝐧𝐝 𝐜𝐨𝐬𝐭 𝑪𝟐
′ = 𝐑𝐬. 𝟎. 𝟏𝟓   

First-phase 

sample size  

Second-phase 

sample size 

Relative 

efficiency 

(Mean SE) 

First-phase 

sample size  

Second-

phase 

sample size 

Cost 

Lamichhane and 

Singh7 𝒕̃𝒓 
104 37 109 (0.125) 257 92 247.37 

Naive estimator 𝒚̃ ~ 50 100 (0.135) ~ 134 268.73 

Estimators 

For real dataset 

Fixed cost 𝐶0 = 𝑅𝑠. 100.00 Fixed Variance 𝑉0 = 19.50 

Cost 𝐶1 = Rs. 20.00, cost 𝐶1
′ =

Rs. 0.75, and cost 𝐶2
′ = Rs. 0.78  

  Cost 𝐶1 = Rs. 20.00, cost 𝐶1
′ =  Rs.  

  0.75, and cost 𝐶2
′ = Rs. 0.78   

First-phase 

sample size  

Second-phase 

sample size 

Relative 

efficiency 

(Mean 

square error) 

First-phase 

sample size  

Second-

phase sample 

size 

Cost 

Proposed 

estimator  𝑻̃𝑹 
19 4 225 (19.63) 21 4 109.28 

Lamichhane and 

Singh7 𝒕̃𝒓 
20 3 170 (26.07) 22 4 112.89 

Naive estimator 𝒚̃ ~ 5 100 (44.26) ~ 9 188.52 

 

Figure 3: (a) Simulated values of the confidence 

interval and the estimates for generated dataset (b) 

Simulated values of the confidence interval and the 

estimates for real dataset. 

If we increase the sample size, the confidence intervals of 

the estimates become shorter. From (Table 7), for both the 

datasets, we observe that for the fixed cost, the suggested 

chain ratio estimator 𝑇̃𝑅 shows the least mean square error 

in comparison to the than Lamichhane and Singh7 ratio 

estimator 𝑡̃𝑟 and naive estimator 𝑦̃. Also, for the specified 

variance, 𝑇̃𝑅 has the lowest cost in comparison to the cost 

of the other estimators 𝑡̃𝑟 and 𝑦̃. 

CONCLUSION 

Using the information on two auxiliary variables, we have 

suggested chain ratio and product estimators for estimating 

the population mode. From the numerical outcomes 

through simulation studies with a generated and a real 

dataset, we found that the introduced chain ratio estimator 

has a minimum mean square error, shorter confidence 

interval, and a higher percentage of estimates coverage 

than Lamichhane and Singh7 ratio estimator and naive 

estimator. After increasing the information related to all 

the variables used, it is also found that mean square errors 

and biases of the estimators decrease, confidence intervals 

become shorter, and covering percentages of the estimates 

become larger. Similar results can be obtained for the 

introduced chain product estimator for negatively 

correlated datasets. So we highly recommend preferring 

these suggested chain ratio and product estimators over 

than Lamichhane et al ratio estimator and naive estimator 

of the population mode.  
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