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ABSTRACT

Background: For skewed datasets, the mode is utilized as a more appropriate measure of location. We formed chain
ratio and product estimators for the population mode using two types of auxiliary information under the two-phase
sampling scheme.

Methods: Expressions for biases and mean square errors for the formed estimators up to the first order of approximation
are obtained. The confidence intervals of the estimators are obtained and the aspects related to fixed cost and fixed
variance are also studied. A simulation study is performed to support the theoretical outcomes. A real dataset is also
provided which was collected from the department of agriculture, United States.

Results: The simulation results for the fixed first-phase sample size 3450 and the second-phase sample size 90 show
that the mean square error is 0.035, the bias is 0.012, the confidence interval is 2.67-3.15, and the cost of the survey
under the fixed variance is Z 194.67 of the proposed estimator (Tg), which is lower than 0.039, 0.055, 2.70-3.20, and %
247.37 of the ratio estimator (t,) and 0.078, 0.041, 2.57-3.31, and Z 268.73 of the naive estimator (¥).

Conclusions: The simulation results show that the proposed estimator (Tg) performs better than the ratio estimator (t,)
and the naive estimator (¥).

Keywords: Mode estimation, Auxiliary information, Cost aspects, Mean square error, Confidence interval, Simulation

study

INTRODUCTION

In sample surveys, surveyors often find that they are
working with data such as income, abortions, drugs, AIDS,
etc., that have skewed distributions. It is more appropriate
to consider mode as a measure of location than the mean
or the median in forecasting ready-made products, such as
garments, shoes, etc.,, in manufacturing. The work
presented here is intended to be helpful for social
scientists, psychologists, demographers, business, and
economics, where the mode is regularly used in practice. Y
is a study variable with the population mean Y =
N1 ¥N_Y,, population mode Y, population median My,
probability density function fy(y), and cumulative

distribution functions Fy(y), X is an auxiliary variable with
the population mean X = N~ ¥N._ X;, population mode X,
population median M,, probability density function fy(x),
and cumulative distribution function Fx(x), and Z is an
additional auxiliary variable with the population mean Z =
NN, Z;, population mode Z, population median M,,
probability density function f;(z), and cumulative
distribution function Fz(z). pyx, pxz and py, are the
correlation coefficients among the study variable Y and the
auxiliary variable X, and the additional auxiliary variable
Z. Chand et al and Guha et al introduced chain estimators
for the population mean and population total in the case
when the population mean X of the auxiliary variable X, is
not available, but the population mean Z or attribute of the
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additional auxiliary variable Z, closely related to X, is
available, which may be cheaper and less correlated to the

study variable Y.14

Table 1: Matrices of proportions.

Auxiliary Study Study
variable X\ variableY < variableY > Total
Study Population Population
variable Y i i
Auxiliary
variable X <
Population P11 P21 YPa
median M,
Auxiliary
variable X >
Population Jagplz ipzz ¥P.1
median M,
Total 1. P2, i
Auxiliary Study Study
variable Z\  variableY <  variableY > Total
Study Population Population
variable Y median M,, median M,,
Auxiliary
variable Z <
Population W11 D21 Wi
median M,
Auxiliary
variable Z >
Population Wiz P22 Wi
median M,
Total w1 . 1
Auxiliary Auxiliary Auxiliary
variable X\  variable Z <  variable Z >

- . . Total
Auxiliary Population Population
variable Z median M, median M,
Auxiliary
variableX < , 5 &
Population xP11 xP21 xPa
median M,
Auxiliary
variable X >, 2 2
Population xP12 xP22 xPa
median M,
Total D1, D2, 1

Similarly, for estimating the population mode, there may
be a case when the population mode X of the auxiliary
variable X, is not available, but the population mode Z of
the additional auxiliary variable Z, closely related to X, is
available, which may be cheaper and less correlated to the
study variable Y. In such a situation, the unknown X can be
estimated using a two-phase sampling scheme invented by
Neyman.? The collection of information on X is cheaper,
S0, a large preliminary sample of size n’ selected from the
population using simple random sampling without
replacement, is considered for collecting information on X

and Z for estimating X as X = %Z where &' is the first-

phase sample mode of X, and Z' is the first-phase sample
mode of Z. A sub-sample of size n selected from the first-
phase sample using simple random sampling without
replacement is further used for noting both the variables Y
and X. y; is the second-phase sample measurements on Y
with sample mode §, and sample median 1\7Iy. x; Is the
second-phase sample measurements on X with sample
mode &, and sample median M,. We define:

}_’ =n"t Z{lzl Yis x=n"! Z{lei' Z=n"1 Zin=1 Zi,
-1 r

! ?:1 Zj,

s;= (- D' YL G -9 sk =0 - DI -0

st = - DI -7 8 = (V- DT B (- D)2,

- -1 ! —
X =n""YL;x,Z =n

SE=W-DTELE -0 =W - DT ELEZ -2,

S =N -DTY G-NK-D)
Spe =(N—-1)7* ZN Z-DX-X%)
i=1

Se =W-DTY G-DE-D),

Qy(p) = Inf(p < F(y),y € R), Qx(p) = Inf(p < F(x),x € R),
Q,(p) =Inf(p < F(2),z €R)

Where R is the real number, and p is the pt" percentile.
List the Y values of the second-phase sample units in

ascending order as y(qy, Y2y, -+ Y(n)- SUPPOSE p = I;" be the
proportion of y (< M,) values y(),y(2) -, Ym), Where
both the values p, and M, are not known and I, is an
integer such that y;, <M, <y .. Hence, M, is
approximately the sample pt™ quantile Qy(p). Here, both
p, and M, can be estimated from the sample. p is estimated
by p and hence Q, (p) is the estimator of Q, (p). M, can be
regarded as the special estimator Q,(p) such that M, =
Qy(O.S). Kuk et al studied matrices of proportions
YPij» ¥pij» and Zpy;, which are given in (Table 1).5

With N — o under a super-population model, the
distributions of the trivariate variables Y, X, and Z become
continuous distributions with marginal densities f, (y),
fx(x), and f;(z). Gross showed that the sample median
1\7Iy is consistent and asymptotically normal with mean M,,
and asymptotic variance.?

V() = (S1) ()

where f=%. When the distribution is moderately

asymmetric, Doodson showed an empirical (also known as
Karl Pearson) relationship between mean, median, and
mode as Mode = 3 X Median — 2 X Mean.?

That is, ¥ = 3M,, — 2Y,X = 3M, — 2X, and Z = 3M, —
27.The naive estimators for ¥,X, and Z based on the
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second-phase sample are given by y = 3117Iy -2y, X = sample, we defined estimators for X and Z as ¥’ = 3M,, —
3M, — 2%, and Z = 3M, — 2Z. Based on the first-phase 2%' and 2’ = 3M, — 22', where M, and M), are the sample

medians based on the first-phase sample of the size n'.
Table 2: Descriptive parameters of the generated dataset.

First Third Standard
quartile guartile Deviation

Variables Median Mode Minimum Maximum

Study variable

v 317 3.08 289 034 8.62 2.42 3.80 1.05
Auxiliary 318  3.08 288  0.46 8.77 2.40 3.82 1.08
variable X
Auxiliary 319  3.07 283 059 8.88 2.39 3.84 1.12
variable Z
We define indicator functions I, for Y, I, for X and I, i = Y5
X

for Z, such that

_ {Liin <M, {1,1in <My o
Yi 7|0, otherwise’ ¥ ~ |0, otherwise z
{1, ifZ, <M, £, =
0, otherwise’
Where the expressions for biases and mean square errors

The variance and covariance of naive estimators ¥, ¥, and . - - . )
of the estimators &, and t,, are given as:

Z may be approximated as:

Vo) = (D) 72 = () C(ham)) " + 452 + B@E,) = (l _ l) <§ _ Q)

128, (f (M) ") n n'/\X2 XY
v = ()72 = (5) G0y "+ a5t + MSEG) = (-~ ) 72
125, (M) ), 11
+<———)(I72 + R2V;2 — 2R V,,)
o B . n n y 1%x 1%yx
v = ()22 = () Gram)) " +4s2 +
125,M,(f,(M,)) "), 1\ Uy
56)= ()%
Cov @D = (52) 7 = (52) (9 (M) (1)) Py —025) +
6Sym, (fx(Mx))™* + 68y, (Fr(My) ) +4yx) MSE(E,) = (1—% 72
1 1y, _ .
cov ) = (L), = () (o (fz(Mz)fy( ) (@i —0.25) + +<;—;) (7 + RV + 2R, V)

68, (M) ™ + 65,0, (/1 (M) +45,..), )
Where R, =% is the ratio of two population modes of Y

Cov(z,%) = (<L) e = (L) (9 (M) £,(M,)) " (Pry — 0.25) + and X. Kumar et al studied naive ratio and product
6Szm, (fX(Mx))_l+6SxMz(fZ(MZ))_1+4Szx), estimators under the two-phase sampling scheme for
estimating the population mode using the information on a
Sy, = (N = D7 T, (% = 1)(I, — 05), Sy, = (N — single auxiliary variable.®
DT ELL G - D(, —05) wy = (N =D EL (Y - D)1, ~
05), Syw, = (N = D)™ T, (%, = 1) (I, — 0.5), S,ur, = (N — METHODS
D7 L = D)1y, = 05), Sy, = (N = DT 2L (2 = D)(1, - : : :
0.5), Sy, = (N = 1)1 S, (Z — Z)(I, — 0.5), Sy, = (N — Proposed estimators and their properties
DL —X)(Izi —0.5),and Sy, = (N = D7 T (X —
%) (I, - 05). Following Lamichhane and Singh” and Chand?, we have
suggested chain ratio and product estimators of the
Lamichhane et al proposed a naive ratio estimator of ¥ population mode Y of the study variable Y using two
using the two-phase sampling scheme as;’ auxiliary variables X and Z where X is considered as the
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main auxiliary variable and Z, which is closer to X, as the
additional auxiliary variable.

7))

Ty

To obtain the properties of the suggested estimators, we
defined

y= 7(1+EO),f=X(1+61),f' =X(1+62),Z’ =
Z(1+ey),

Where E(e,) = E(e;) = E(€;) =E(e5) =0

One can only see that:

£ (-3 e - () e -
G-2% e - (D%

Bleoe) = (2-2) 3 Bleoer) = (5-3) 2%

N/ X’ N N) 7%’
E(60€3) = (% — %) %’
— -
R
E(ez€e3) = (% - %) %’

The expressions for biases and mean square errors of the
proposed estimators T, and T are given as

oo (- B(E-5)6-HE-)

oL Ny,
J“””(rw)(%‘%

1 . _
— - N) R,(2V,, + R,V?)

" 11 _ 8
= MSE(%,) + (F - N) R,(2V,, + R,V?),

Where R, = g is the ratio of two population modes of Y
and Z.

Comparison of estimators
In this section, conditions for which the proposed

estimators have lower mean square errors than the other
relevant estimators are obtained.

st svork e o st 1735,
2\ R{V;

MSE(Ty) < MSE(E,) if U, = 2(R,V2),

MSE(Tp) < V() ifK < —%(1 + I’;‘; (Ry V2 +
217yz)> and MSE(Tp) < MSE(%,) if V},, < —%RZVZZ

)
)

C ~ ~ .
Where = py5 C—; = » Vyx, and V,,, are covariance

terms.
A simulation study with a generated dataset

In this section, we have performed a simulation study with
one generated dataset (considered as a population). We
generated an artificial dataset by assuming the size N =
5000 of independent Gamma variables Z; ~
G(N,8.00,2.50). We estimated the main auxiliary
variable X; = 0.15+ 0.90Z; + 0.20e;, where e; ~
N(0,1). Finally, we estimated the study variable using a
linear relation ¥; = 0.15 4+ 0.90X; + 0.20e, where e, ~
N(0,1) . The fitted distributions of the study and the
auxiliary variables are given in Figure 1 (a) for the
generated dataset, and we obtained the parametric
estimates of Gamma distribution for the study and the
auxiliary variables. We also calculated various descriptive
parameters of the study and the auxiliary variables in Table
2. The correlation coefficients among the study and the
auxiliary variables are p,, = 0.99, p,, = 0.96, and p,, =
0.98 for the dataset, which are quite good for our study.
The value of Ip;; = 0.470,%p;; = 0.462, and p,; =
0.472 for the data set are also observed. The correlation
coefficients among sample modes are pyz = 0.76, pyz =
0.54, and pg; = 0.74 for the dataset. The relative
efficiencies (REs) of the estimators with respect to the
naive estimator of the population mode are calculated as:

RE®) = % x 100%, RE (,) = Mzgz) x 100%, and

=N\ _ V@) o
RE(TR) = wsp < 100%

In our case, the subsequent sampling scheme is simple
random sampling without replacement, so the possible
number of samples is N¢ , which is too large. So, we
selected M = 10,000 samples randomly, each of the size
n. We computed simulated mean square errors, simulated
biases (Bs), simulated relative efficiencies (REs), and
ratios (R) of approximate expressions of mean square
errors to the simulated mean square errors in (Table 3) for
different sizes of the second-phase sample n =
90,180, 360,540,900, and 1800 at the fixed size n' =
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3450 of the first-phase sample. We have shown simulated
mean square errors and biases through graphical
representations in (Figure 1).

Density Density Density
0414 0.4+ 04

0.3 Shape: .00 0.3
Scale: 0.35

Shape: 8.10
Scale: 0.39

T —T
0 2 4 6 8 0 2 4 6 8 2 4 6 8

Values of auxiliary variable X Values of study variable Y Values of auxiliary variable Z

(@)

Simulated Bias

Simulated MSE
- 0.25
Na
0.20
0.06
0.15
0.04 1, 0.10 A st
3 timat
% 5
'in ¥ - 0.05 4 3 v 3
982 He b LA
Rt 0004 "% _fmmes
R i ;
0.00 - ————— T
500 1000 1500 500 1000 1500
Second-phase sample n Second-phase sample n
(b)

Figure 1: (a) Parameter values for the generated
dataset, (b) simulated values of mean square errors
and biases of the estimators for generated dataset.

The simulated mean square errors of the estimators of the
population mode are given as:

MSE(y) = %Zkﬂ(ﬁk — 7)", MSE(Z,)

1 M N2
= Mzkzl(tr'k -7)
- 1 Mo )
MSE(T;) = Mzk—l(Tle -7)"
The simulated relative efficiencies of the estimators with

respect to the naive estimator of the population mode are
given as:

RE(®) =

S e P)”

Z£4=1(fr|k_}7)2
S0 000
M (Trpe—7)” '

S e 7)”
ML -7’

100% RE(Tg) =

x 100% , (£,) =

The simulated biases of the estimators T, £,, and ¥ are
given as:

BG) =T — 7). BGE) = Zila (B = 7),
and B(TR) = %Zﬁ":l('fmk - Y)

For the investigations of how far approximate variances
are from the simulated mean square errors, we computed
the three ratios (R) for generated data set given as:

- MSE(£,) ~
R(t,) = ———— R(TR) =
(&) 5 I (Erpe-7)* ()

MSE(TR)
1

T v 7~ 2t
i 2ty (Tri=7)

RG) = T2

1 ~ ~\2
2 (71k-7)

RESULTS

From (Table 3, Figure 1b) we observe that the values of
mean square errors of the suggested ratio estimator are less
than Lamichhane et al ratio estimator and naive estimator.”
Also, the mean square errors decrease when the second-
phase sample size increases. The values of biases of the
estimators are very low and close to zero. The ratios of the
exact mean square errors to the simulated mean square
errors are close to one, indicating that simulated mean
square errors are approximately close to exact mean square
errors. It means that exact mean square errors can also be
used as simulated mean square errors. In (Table 3) we also
computed the exact values of mean square errors and exact
biases. The values of mean square errors of the suggested
chain ratio estimator are less than that of other than
Lamichhane and Singh’” ratio estimator and naive
estimator.

An application

To validate the theoretical conclusions with a real dataset,
we have taken a dataset from the Department of
Agriculture, United States.® This dataset was collected
during the years 2003-2008. This dataset represents the
price (US $)/centum weight (Cwt) of sweet corn in the year
2005 as the study variable Y, the price (US $)/Cwt of sweet
corn in the year 2004 as the main auxiliary variable X, and
price (US $)/Cwt of sweet corn in the year 2003 as the
additional auxiliary variable Z. The correlation
coefficients among the study and the auxiliary variables
are p,, = 0.95, p,, = 0.92,and p,, = 0.93 for the data
set, which are acceptable for our study. We also observe
that the value of p,; = 0.48,7p,; = 0.41, and ¥p;; =
0.41. The correlation coefficients among sample modes
are pyz = 0.87,pyz = 0.51, and pg; = 0.55 for the
dataset. We calculated various descriptive parameters of
the study and the auxiliary variables listed in (Table 4). We
fitted an exponential distribution, a Gamma distribution,
and a Weibull distribution to each of the variables used in
this study, which are given in (Figure 2a) shows that the
Gamma distribution gives the best fit for the dataset, and

we approximately get that
Y;~G(14.56,1.71), X;~G(10.38,2.21), and
Z;~G(10.39,2.14).
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Table 3: Simulated and exact values of the estimators for different values of n at the fixed first-phase sample size
n' = 3450 for the generated dataset.

Simulated values of the estimators

Parameters

Relative efficiency of proposed estimator Ty
Mean square error of proposed estimator Ty
Bias of proposed estimator Ty

Ratios of the exact mean square error to the simulated mean square

error of proposed estimator Ty

Relative efficiency of Lamichhane and Singh? estimator &,

Mean square error of Lamichhane and Singh” estimator Z,
Bias of Lamichhane and Singh? estimator &,

Ratios of the exact mean square error to the simulated mean square

error of Lamichhane and Singh” estimator ,.
Relative efficiency of naive estimator y
Variance of naive estimator y

Bias of naive estimator y

Ratios of the exact variance to the simulated variance of naive

estimator y
Exact values of the estimators

Relative efficiency of proposed estimator T
Mean square error of proposed estimator T g
Bias of proposed estimator Ty

Relative efficiency of Lamichhane and Singh” estimator &,

Mean square error of Lamichhane and Singh’ estimator Z,
Bias of Lamichhane and Singh” estimator £,

Relative efficiency of naive estimator y

Variance of naive estimator y

Bias of naive estimator y

Second-phase sample size

90 180 360 540 900 1800
225 189 204 218 215 192

0.035 0.017 0.010 0.005 0.003  0.001
0.012 -0.007 -0.010 -0.003 0.009  0.021

1.09 1.09 095 118 125 1.02

203 158 178 162 160 1139
0.039 0.021 0.011 0.007 0.004  0.002
0.055 0.053 -0.040 0.039 0.031  0.031

098 092 085 091 099 0.85

100 100 100 100 100 100
0.078 0.082 0.019 0.011 0.006 0.003
0.041 0.045 -0.053 0.037 0.028 0.032

0.95 113 091 106 111 0.97

Second-phase sample size

90 180 360 540 900 1800
197 197 196 195 192 183
0.038 0.019 0.009 0.006 0.003 0.001
0.007 0.004 0.002 0.001 0.001 0.000
196 195 191 188 181 159
0.038 0.019 0.009 0.006 0.003 0.002
0.007 0.004 0.002 0.001 0.001 0.000
100 100 100 100 100 100
0.075 0.037 0.018 0.011 0.006 0.002
0 0 0 0 0 0

Table 4: Various descriptive parameters for the real dataset.

Median Mode

Variables

Minimum Maximum

Study variable 2488 22.20 16.83 13.70

Y
Auxiliary
oxian 2201 2080 1657 11.70
Auxiliary 2228 2060 1723 9.10
variable Z

With the help of this real dataset, we have carried out a
simulation study using R software. In our case, the
sampling scheme used is simple random sampling without
replacement, so the possible number of samples is N, ,
which is too large. So, we selected M = 10,000 samples
randomly, each of the size n. In Table 5, we computed
simulated mean square errors using Eq. (34), simulated
biases using Eq. (31), and simulated relative efficiencies
using Eq. (35) of approximate expressions of mean square

First i Standard

Deviation
41.50 20.10 28.00 6.98
42.00 18.40 27.00 7.62
42.00 17.00 25.00 7.27

errors to the simulated mean square errors for different
sizes of the second-phase sample and at the fixed size of
the first-phase sample. We have shown simulated mean
square errors and biases through graphical representations
in Figure 2 (b), we note that the mean square errors and
biases of the proposed estimator T, are lower than those of
the relevant estimators £,. and . Hence, the proposed chain
ratio estimator is more efficient than the than Lamichhane
and Singh” ratio estimator and naive estimator.
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Table 5: Simulated values of the estimators for different values of n at the fixed first-phase sample size n’ = 20 for
the real dataset.

Naive estimator y

Second-phase

Mean

Lamichhane and Singh”

Proposed estimator T

Mean

sample size n Relative . Relative . Relative .
.. square Bias . square  Bias - square Bias
efficiency efficiency efficiency
error error error
5 100 40.03 331 128 31.20 267 135 29.72 2.47
10 100 13.78 292 155 8.88 198 165 8.34 1.85
14 100 7.07 222 131 5.40 194 166 4.25 1.63

Confidence interval

The 100 (1 — a)% confidence intervals based on
simulated estimates of the estimators Ty, £,, and  are
given by:

T £ tauon)(@/2) (MSE(TR)) %, £, oy (/
2)(MSE(£,))"/?
7+t (@/2)(VE) "

Where t(,_1)(a/2) is the value of the t-variate at (n — 1)
degrees of freedom for a 95% level of confidence
coefficient. We calculated 95% simulated confidence
intervals of the estimated value for different values of n =
90, 180, 360, 540,900, and 1800 at the fixed size n' =
3450 for the generated dataset, and for n = 5,10, and 14
at the fixed size n’ = 20 for the real dataset. For the
generated dataset, the simulated as well as exact
confidence intervals, percent coverage of the estimates,
simulated estimates, and quartiles of the estimators T, £,
and ¥ are calculated and given in (Table 6) and simulated
values of confidence interval is presented graphically in
(Figure 3a). For the real dataset, the simulated confidence
intervals, percent coverage of the estimates, simulated
estimates, and quartiles of the estimators Ty, £, and ¥ are
calculated in (Table 6) and graphically presented in
(Figure 3b). From (Table 6, Figures 3a and b), we observe
that the proposed chain ratio estimator has a shorter
confidence interval and more percent coverage than the
than Lamichhane et al ratio estimator and naive estimator
of population mode.” If we increase the sample size, the
confidence intervals of the estimates become shorter.

Study to determine of n’ and n for fixed cost € < €,

In practical applications, the cost aspect should also be
taken into account. So, we define C, to be the total cost,
i.e., fixed of the survey apart from overhead cost. The
expected total cost of the survey, apart from the overhead
cost, is given by a cost function:

C = (C{ + Cy)n' +nCy,
Where C; = The cost per unit of identifying and observing

the main auxiliary variable x at the first-phase, C; = The
cost per unit of identifying and observing additional

auxiliary variable z at the first-phase, and
C; = The cost per unit of mailing the questionnaire/visiting
the unit in the second-phase. The expression for MSE(T;),
i = 1,2,3 can be written as follows:

MSE(T;) = =% +
% + independent terms from n’ and n;i = 1,2, 3,
Where T, =9,T, =%, T, =Tz and V,;,V;; are the
coefficient of the terms of % and % respectively in the

expression of MSE(T;), i = 1,2,3. We consider 1 to be the
function as follows:

Y = MSE(T;) + 4;((C{ + Cn’ + nCy)

Where 1; is a Lagrange’s multiplier. Differentiating ¢
with respect to n’ and n and equating them to zero, we

obtained
o Vii
n ‘\/ai(c;wz’)’
i Voi
V1iCy

We know that n’ > n so, we have C; + C; < ”

0i

Substituting the values of n’ and n from above equations
then we have,

1
V= o (VE+ OV + T

It has been observed that the determinant of the matrix of
the second-order derivative of ¥ with respect to n’ and n
is negative for the optimum values of n’ and n, which
shows that the solution for n" and n given by above
equations for C < C, minimizes MSE(T;). The minimum
value of MSE (T;) for the optimum value of n’ and n are
given by:

1 2
MSE(T) = o (V& + CDVar +CiVor)

1, . .
— (7 + REV2 — 2R, 7,)
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Study to determine of n’ and n for a fixed variance V =
Vo

We define V, be the variance of the estimator T;),i =
1,2,3 in advance, then we have:
Voi Vi 1

Vo =7+?_N(V}2 +R§VZZ _ZRZVyz)

Histogram and theoretical densities

Density
008
0.06
0044

0024/ |4

Simulated MSE Simulated Bias

3.5

Nalve estimator § Naive estimator § | and
85 Lamichhane and | sSingh (2016) ratio
30 - Singh (2016) ratio 3.0 *  estimator i,
M estima Proposed
25 X 2 ~ 7 estimator Tg
20 88 ropos: 25 Ty
N estimator R o 7
15 \;\ / Mgt d
~
10 N 2.0 e
5 i ~—
| B S E— E— |
6 8 10 12 14 6 8 10 12 14

Second-phase sample n Second-phase sample n

()

Figure 2: (a) Parameter values of the variables for the
real dataset (b) Simulated values of mean square
errors and biases of the estimators for different values
of n at the fixed n’ = 20 for the real dataset.

The total cost, apart from the overhead cost, is minimized
by obtaining the optimum values of n" and n for specified
precision V = V. For this purpose, we defined a function
¢ which is given as follows:

¢ = (C1 + CIn' + Cin + p(MSE(T) — Vo),
Where i = 1,2,3, and y; is a Lagrange’s multiplier. After

differentiating ¢ with respect to n’ and n and equating
them to zero, we get,

r_ Vil
W= e

Substituting the values of n’ and n from Eq. (48) and (49),
we get

1 7 ’
Vi = Vo+y(V3+R3VZ~2R2Ty) (Woila VWil + €3))

It has also been seen that the determinant of the matrix of
a second-order derivative of ¢ with respect to n’ and n is
negative for the optimum values of n’ and n, which shows
that the solution for n',n given by Eq. (48) and (49).
Putting the values of \/E from Eq. (50) in Eq. (48) and
(49), we can obtain the value of n’ and n for which the
estimator MSE(T;), i = 1,2,3 attains the variance V, with
the expected cost given by

1
1 /7~ ~ ~

Vo +~ (%2 + R3V2 - ZRZV%Z)
+ T + C))

C(t) =

(VVarCr

From (Table 7), for both the datasets, we observe that for
the fixed cost, the suggested chain ratio estimator T shows
the least mean square error in comparison to the than
Lamichhane and Singh’ ratio estimator £, and naive
estimator ¥. Also, for the specified variance, T; has the
lowest cost in comparison to the cost of the other

estimators £, and .
DISCUSSION

We formed chain ratio and product estimators for the
population mode using two types of auxiliary information
under the two-phase sampling scheme. We supported
theoretical outcome through a simulation study. On the
basis of simulated results, from (Table 3, Figure 1b), we
observe that the values of mean square errors of the
suggested ratio estimator are less than Lamichhane et al
ratio estimator and naive estimator.” Also, the mean square
errors decrease when the second-phase sample size
increases.

The values of biases of the estimators are very low and
close to zero. The ratios of the exact mean square errors to
the simulated mean square errors are close to one,
indicating that simulated mean square errors are
approximately close to exact mean square errors. It means
that exact mean square errors can also be used as simulated
mean square errors. In (Table 3), we also computed the
exact values of mean square errors and exact biases. The
values of mean square errors of the suggested chain ratio
estimator are less than that of other than Lamichhane et al
ratio estimator and naive estimator.’

In Table 5, we computed simulated mean square errors
using Eqg. (34), simulated biases using Eqg. (31), and
simulated relative efficiencies using Eq. (35) of
approximate expressions of mean square errors to the
simulated mean square errors for different sizes of the
second-phase sample n = 5,10, and 14 at the fixed size
n' =20 of the first-phase sample. We have shown
simulated mean square errors and biases through graphical
representations in (Figure 2b). From (Table 5, Figure 2b),
we note that the mean square errors and biases of the
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proposed estimator Ty are lower than those of the relevant naive estimator. From (Table 6, Figures 3 a and b) we
estimators £, and . observe that the proposed chain ratio estimator has a

shorter confidence interval and more percent coverage
Hence, the proposed chain ratio estimator is more efficient than the than Lamichhane et al ratio estimator and naive
than the than Lamichhane and Singh’ ratio estimator and estimator of population mode.’

Table 6: Simulated and exact confidence interval and its estimates of the estimators at different sizes of the second-
phase sample at the fixed first-phase sample sizes for the generated dataset and the real dataset.

| Simulated results for the generated dataset

Estimators Lower Upper Coverage Simulated Star_1de_1rd Lower Me  Upper
Limit Limit percent estimates deviation Quartile dian Quartile

Y =2.89,n' = 3450

Second-phase sample size n=90

Proposed 267 315 95.45 2.91 0.19 2.78 290 3.02

estimator Tp

'S‘?nng;]ihiha”e and 570 320 94.45 2.95 0.19 2.82 294 307
i

Naive estimatory  2.57 3.31 81.84 2.94 0.28 2.76 294 312

Second-phase sample size n =180

Proposed 272 3.06 90.80 2.89 0.13 2.80 2.88 297

estimator Tp

'S‘?nng;]ihiha”e and  ,76 314 92.54 2.95 0.13 2.86 294 304
i

Naive estimatory  2.71 3.18 82.42 2.94 0.17 2.83 295 3.05

Second-phase sample size n=360

Proposed 276 3.02 91.14 2.89 0.10 2.82 2.88 295

estimator Tp

'S-?n”;]ihiha”e and 575 300 93.70 2.86 0.10 2.79 285 292
]

Naive estimator y  2.66  3.03 83.91 2.84 0.13 2.76 2.85 2.93

Second-phase sample size n=540

Proposed 280  2.99 91.47 2.89 0.07 2.85 289 294

estimator Tp

'S-?n”;]ihiha”e and o83 304 95.00 2.94 0.07 2.89 293 298
]

Naive estimator ¥  2.80  3.07 84.79 2.93 0.10 2.87 293 3.0

Second-phase sample size n=900

Proposed 284 297 94.20 2.91 0.05 2.87 290 2.94

estimator Tp

'S-?n”;]ih'%a”e and 585 300 95.13 2.93 0.05 2.89 293 2.96
i

Naive estimator y  2.83  3.02 85.01 2.93 0.07 2.88 292 297

Second-phase sample size n=1800

Proposed 287 297 96.35 2.92 0.02 2.90 292 294

estimator Tp

'S-?nrg;ﬁh'%a”e and 587 299 97.35 2.93 0.02 291 293 295

Naive estimator ¥  2.86  3.00 90.99 2.93 0.03 2.90 293 295

Exact results for the generated dataset

Estimator Lower limit  Upper limit  Estimated value U-L

Second-phase sample size n=90

Proposed estimator Tg 2.53 3.17 2.85 0.64

Lamichhane and Singh’ Z,. 2.50 3.15 2.83 0.65

Naive estimator y 2.35 3.26 2.81 0.91

Continued.
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Simulated results for the generated dataset

. Lower Upper Estimated

Sailukins Limit Limit value i
Second-phase sample size n=180

Proposed estimator Tg 2.72 3.17 2.95 0.45
Lamichhane and Singh” £, 2.74 3.20 2.97 0.46
Naive estimator y 2.69 3.33 3.01 0.64
Second-phase sample size n=360

Proposed estimator Tg 2.77 3.08 2.93 0.31
Lamichhane and Singh’ &, 2.78 3.10 2.94 0.32
Naive estimator y 2.66 3.09 2.88 0.43
Second-phase sample size n=540

Proposed estimator T 2.73 2.98 2.85 0.25
Lamichhane and Singh’ &, 2.74 3.00 2.87 0.26
Naive estimator y 2.70 3.05 2.87 0.35
Second-phase sample size n=900

Proposed estimator T 2.79 2.98 2.89 0.19
Lamichhane and Singh’ Z, 2.77 2.97 2.87 0.20
Naive estimator y 2.71 2.97 2.84 0.26
Second-phase sample size n=1800

Proposed estimator Tp 2.81 2.93 2.87 0.12
Lamichhane and Singh’ Z, 2.83 2.96 2.90 0.13
Naive estimator y 2.77 2.94 2.85 0.17

Second-phase sample size n=5
Lower Upper Coverage Simulated Standard Lower Median  Upper quartile
Limit Limit percent estimates  deviation quartile

Y=16.83,n' =20
Second-phase sample size n=5

Proposed estimator T~ 12.86 23.89 98.65 18.38 362 1624 1787  19.70
( Tk
'{am'Chha“e andSingh® 1557 9701 9855 2009 396 1775 1953 2153
T
Naive estimator 7 1093 3126 96.15 21.09 498  17.80 2110  22.78
Second-phase sample size n=10
Proposed estimator T~ 1470 2269 98.10 18.70 221 1731 1840  19.78
( Tk
'{am'Chha“e and Singh” ) o6 2097  97.95 18.82 223 1743 1852  19.91
T
Naive estimator 7 1407 2544 98.90 19.75 230 1810 1972  21.28

Second-phase sample size n=14

Proposed estimator Tp 1540 2155 99.50 18.48 1.25 17.73 18.41 19.22
( s

'{am'Chha“ea”dS'“gh 1523 2233 99.50 18.78 1.27 1802 1871 1953

T

Naive estimator ¥ 15.03 23.09 99.60 19.06 1.46 1791  19.02  20.07

Table 7: REs in percent of the estimators with respect to y for the fixed cost C < €, and expected cost of the
different estimators for a specified variance V = V, for the generated and the real datasets.

For generated dataset

Fixed cost C, = Rs.100.00 Fixed Variance Vy = 0.05

Cost €, = Rs.2.00, cost C; = Rs.0.10, Cost C; = Rs.2.00,cost C; = Rs.
Estimators and cost C;, = Rs.0.15 0.10,and cost C;, = Rs.0.15
First-phase Second-phase eRfiiIs;[el\r/li First-phase Sﬁgc;r;d- Cost
sample size sample size (Mean S)IIE) sample size Eample size
Proposed 66 42 139 (0.098) 128 81 194.67
estimator Tp
Continued.
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For generated dataset
Fixed cost C, = Rs.100.00

Estimators and cost C, = Rs.0.15
First-phase Second-phase
sample size sample size

Lamichhane and

Singh’ £, 104 37

Naive estimatory ~ 50
For real dataset
Fixed cost C, = Rs.100.00
Cost C; = Rs.20.00,cost C; =

Estimators Rs.0.75,and cost C; = Rs.0.78
First-phase Second-phase
sample size sample size

Proposed

estimator Ty 19 4

Lamichhane and

Singh’ &, e .

Naive estimatory ~ 5

Al
Population mode ¥

500 1000 1500

Second-phase sample n
(@)

Simulated values of confidence intervals and estimates

d N
7" Proposed \
estimator T, Population mode ¥

~ Lowerlimits of e
r T T T d
6 8 10 12 14
Second-phase sample n

Figure 3: (a) Simulated values of the confidence
interval and the estimates for generated dataset (b)
Simulated values of the confidence interval and the

estimates for real dataset.

If we increase the sample size, the confidence intervals of
the estimates become shorter. From (Table 7), for both the
datasets, we observe that for the fixed cost, the suggested
chain ratio estimator T shows the least mean square error
in comparison to the than Lamichhane and Singh” ratio
estimator £, and naive estimator 3. Also, for the specified

Cost C; = Rs.2.00, cost C; = Rs.0.10,

Fixed Variance Vo = 0.05

Cost C; = Rs.2.00,cost C; = Rs.

0.10,and cost C;, = Rs.0.15

Relative First-phase Second-
efficiency sam I?a size phase Cost
(Mean SE) P sample size
109 (0.125) 257 92 247.37
100 (0.135)  ~ 134 268.73
Fixed Variance V, = 19.50
Cost C; = Rs.20.00, cost C; = Rs.
0.75,and cost C; = Rs.0.78
Relative Second-
efficiency First-phase
- phase sample Cost
(Mean sample size .
size
square error)
225(19.63) 21 4 109.28
170 (26.07) 22 4 112.89
100 (44.26) ~ 9 188.52

variance, T has the lowest cost in comparison to the cost
of the other estimators £, and .

CONCLUSION

Using the information on two auxiliary variables, we have
suggested chain ratio and product estimators for estimating
the population mode. From the numerical outcomes
through simulation studies with a generated and a real
dataset, we found that the introduced chain ratio estimator
has a minimum mean square error, shorter confidence
interval, and a higher percentage of estimates coverage
than Lamichhane and Singh” ratio estimator and naive
estimator. After increasing the information related to all
the variables used, it is also found that mean square errors
and biases of the estimators decrease, confidence intervals
become shorter, and covering percentages of the estimates
become larger. Similar results can be obtained for the
introduced chain product estimator for negatively
correlated datasets. So we highly recommend preferring
these suggested chain ratio and product estimators over
than Lamichhane et al ratio estimator and naive estimator
of the population mode.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the
Institutional Ethics Committee

REFERENCES

1. Chand L. Some ratio type estimators based on two or
more auxiliary variables. Available at: https://www.
semanticscholar.org/. Accessed on February 2023.

International Journal of Scientific Reports | October 2023 | Vol 9 | Issue 10 Page 324



Kumar S et al. Int J Sci Rep. 2023 Oct;9(10):314-325

. Doodson AT. Relation of the mode, median and mean
in frequency curves. Biometrika. 1917;11(4):425-9.

. Gross S. Proceedings of the Section on Survey
Research Methods Median estimation in sample
surveys. Alexandria; American Statistical Association
publication. 2012.

. Guha, S, Chandra, H. Improved chain-ratio type
estimator for population total in double sampling.
Mathemat Popul Studies. 2020;27(4):216-31.

. Kuk AY, Mak TK. Median estimation in the presence
of auxiliary information. J Royal Stat Soc. 1989;51(2):
261-9.

. Kumar S, Tiwari, N. Generalized naive ratio and
product based estimators for estimating population
mode in simple random sampling. Int J Stat
Economics. 2019;20(1):57-79.

7. Lamichhane R, Singh S. Estimation of mode using
two-phase sampling. Commu Stat Simul Comput.
2016:45(7):2586-97.

8. Neyman J. Contribution to the theory of sampling
human populations. J Am Stat Assoc. 1938:33(201):
101-16.

9. Dataset from the Department of Agriculture, United
States. Available at: www.nass.usda.gov. Accessed on
01 July 2022.

Cite this article as: Kumar S, Yadav A. Chain ratio
and product estimators for population mode using
two-phase sampling scheme. Int J Sci Rep
2023;9(10):314-25.

International Journal of Scientific Reports | October 2023 | Vol 9 | Issue 10 Page 325


http://www.nass.usda.gov/

