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INTRODUCTION 

Mosquitoes are the main vectors of many pathogens that 

cause diseases in humans such as rift valley fever, West 

Nile encephalitis, and lymphatic filariasis.1-3 Ae. aegypti 

is generally considered the main vector of zoonotic 

arboviruses including yellow fever, dengue fever, 

chikungunya viruses and Zika fever.4-7 Infectious and 

vector-borne diseases epidemiology may be altered due 

to changes in host ranges from climate change.8   

Most climate change scenarios connect the changes in 

infectious disease frequency to changes in weather 

extremes, and changes in the spread of communicable 

diseases to average temperature increases.9 Parasitic 

diseases carried by arthropod vectors, like mosquitoes, 

are the primary vectors of vector-borne diseases which 

are particularly sensitive to changes in external climatic 

conditions given they are poikilothermic (body 

temperature is variable based on ambient temperature).10 

The suitability of habitat influences the population, 

distribution, and abundance of insects. Furthermore, 

temperature affects the rate of pathogen development and 

replication in mosquitoes, increasing risk of infection.11,12  

Precipitation also significantly affects the dynamics of 

the vector-borne disease network for diseases carried by 
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vectors with aquatic developmental stages, depending on 

the alterations in the ecology of mosquito vectors.13 An 

increase in diseases spread by mosquitoes is a result of 

climate change. Climate change has been a major factor 

in the 10% increase in mosquito-borne disease (MBD) in 

Canada during the past 20 years.14 This is due to 

alterations of life cycles, reproduction, and feeding of 

mosquitoes are impacted by temperature, precipitation, 

and land use.15   

The habitat, seasonality, and range of mosquitoes that 

spread disease are affected by climate change. Changes in 

host range pose a hazard to ecological processes and has 

an influence on biodiversity, especially for insects in 

many habitats across the world.16 Climate change, on the 

other hand, is a major factor in the resurgence of insect 

pests. Numerous pests that are harmful to humans, 

including mosquitoes (Culicidae), will move into new 

habitat locations due to changes in global temperature.17 

Studies investigating climate change effects have 

predicted future trends, which include increasing 

transmission intensity and expanded spatial dispersion of 

mosquito-transmitted diseases such as malaria and 

dengue.18,19 Increasingly, data suggests that the host range 

distributions of some mosquito species have already 

begun to vary because of changing climatic conditions, 

and it forecasts that this pattern is likely to continue 

further with climate change.19 At smaller regional 

dimensions, biotic factors like predation, competition, 

and vector control efforts have a significant impact on 

mosquito abundance, but at greater geographical sizes, 

abiotic factors like terrain and climate have a more 

significant impact.20   

A growing number of studies have employed ecological 

niche models (ENM) and bioclimatic envelope models to 

simulate potential effects of climate change on species 

distributions.21 Environmental influences have significant 

variation in both adult and immature stage features of 

insects, including larval growth rates, development 

durations, body size, fertility, and longevity.22 For 

mosquitoes and other arthropods, temperature is a 

particularly significant abiotic element since it has direct 

impact on mortality, life expectancy, and development 

rates that might result in morphological alterations.23,24   

As a result of the increased interest in conservation and 

biogeographic studies, species distribution models 

(SDMs) are currently one of the most popular scientific 

methods for identifying potential impacts of climate 

change on biodiversity.25 To evaluate the ecological and 

evolutionary dynamics that influence the geographic 

distribution of species and the suitability of their habitat, 

these models are successfully and widely used.26,27 SDMs 

are commonly applied in many ecological, biological, 

and biogeographical applications are commonly use 

species distribution models to forecast past, present, and 

future species distributions.28 Climate has frequently been 

studied as the main factor in the spatial distribution of 

global biodiversity.29 

METHODS 

Global distribution data  

The occurrence data of Ae. aegypti was obtained from the 

global biodiversity information facility (GBIF.org 

https://doi.org/10.15468/dl.sgpgg0) for the time period 

January 1900 to December 2022. The database that was 

downloaded contained 88,888 geo-referenced records 

with coordinates and the source of these occurrence data 

was preserved specimens and human observations. We 

used ArcGIS 10.3 to verify the records in order to delete 

duplicate geographic records and points outside the 

shapefile of the world map.30 This resulted in 17,465 

distribution points, and then reduced further into 16,950 

records after removing the reciprocated missing values of 

the resampled environmental factors of climate and 

topography (Figure 1).  

           

Figure 1: Observed distribution of Ae. aegypti. 

Environmental variables and multicollinearity  

Based on the dataset for its current presence, twenty 

factors were collected as predictors to simulate the 

potential environmental niche of Ae. aegypti. In 

particular, 19 bioclimatic layers (bio01-bio19) and one 

topography variable, namely Altitude (Alt), with a spatial 

resolution of 2.5 arcminutes (5 km at the equator) were 

collected from the WorldClim database 

(http://www.worldclim.org).31 Previous research indicated 

that these environmental parameters were the most 

important factors to consider when calculating 

prospective species dispersal.32 

In order to evaluate the possible effects of climate change 

on the dispersal of Ae. aegypti, global general circulation 

models (GCMs): BCC-CSM1.1 (Beijing climate centre-

climate system modelling 1.1 were applied, 

http://forecast.bcccsm.ncc-cma.net/web/channel-34.htm).  

http://forecast.bcccsm.ncc-cma.net/web/channel-34.htm
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Global climate model BCC-CSM1 was obtained from 

WorldClim database under both scenarios over periods 

2030 (avg for 2021-2040) and 2090 (avg of 2081-2100).   

We applied two global climate models (GCMs): BCC-

CSM2-MR and IPSL-CM6A-LR. We used the GCMs 

from the CMIP6 of the sixth assessment report (AR6) of 

the intergovernmental panel on climate change (IPCC). 

Two shared socio-economic pathways (SSPs) were 

selected for each of the GCMs: SSP126 and SSP585. The 

two SSPs emission scenarios were then considered to 

represent a low-forcing and high-forcing scenario of 

climate change with economic development.  

Model performance 

Description and modeling for this study was applied to 

obtain uncorrelated environmental variables that 

influenced species distribution. The SDM package in R, 

version 4.1.5, can be used to simulate current and project 

future potential suitable distribution regions 

(https://www.rproject.org). Thirty percent of the 

occurrence data were used for testing, while the other 

seventy percent were used for training. The linear, 

quadratic, product and hinge were set as automatic.  

The significance of predictor variables in the possible 

distribution of Ae. aegypti to prevent multicollinearity 

issues, correlated variables with variance inflation factor 

(VIF) values > 5 and a correlation threshold of 0.75 were 

deleted. Three environmental variables (bio4, bio12 and 

Alt) were kept in the process in R. All these non-linear 

variables-aside from elevation were similarly employed 

in the modelling of Ae. aegypti under potential future 

global warming scenarios. VIFs of 20 environmental 

variables were investigated to remove multicollinearity 

and choose the most fitting predictors that appear more 

contribution power to the model.   

Based on their VIF we deleted the highly correlated 

variables, to reduce overfitting of SDM models, which 

measures how strongly each predictor can be explained 

by the rest of the predictors.33   

To make VIF analysis, we applied the vifcor and vifstep 

functions of the package “usdm” in R version 4.1.1 to 

eliminate the variables with VIF values greater than 5 and 

a correlation threshold of 0.75, as followed by.28,34 The 

relative importance of predictor variables ware estimated 

using function “SDM” package in R version 4.1.1.  

RESULTS  

Climatic variables importance  

Our findings supported the use of three uncorrelated 

predictor variables in R models (Table 1). Altitude (Alt), 

temperature seasonality (bio4), and annual precipitation 

(bio12) (mm) all demonstrated excellent sensitivity in Ae. 

aegypti. These were found to have a major impact on the 

climatic suitability of Ae. aegypti under current and 

future climatic conditions.  These bioclimatic variables 

were the most important three environmental data that 

affected the distribution of Ae. aegypti. Temperature 

Seasonality (bio4) (83%) was the most important 

environmental variable that had the highest contribution 

to the distribution of Ae. aegypti then altitude (6.3%) 

while, (Annual precipitation (mm)) (bio12) (1.1%) had 

the least contribution. Respective variable contributions 

are summarized in Table below (Table 1 and Figure 2).  

Table 1: Permutation importance of variables for 

modeling. 

Code Variables Units 
Percent 

contribution 

bio_04 
Temp. seasonality 

(SD*100). 
°C 83 

alt Altitude m 6.3 

bio_12 
Annual 

precipitation (mm) 
mm 1.1 

 

Figure 2: Variable’s importance to the prediction 

distribution model of Ae. aegypti. 

Model evaluations and critical environmental variables   

The model was performed to estimate potential habitats 

with a mean AUC of 0.85. The mean AUC values for the 

models of Ae. aegypti were noticeably high. Prediction 

results were very accurate, which also meant that results 

of the potential distribution area were reliable (Table 2).  

Table 2:  AUC values for the Ae. aegypti climatic 

suitability models run in R version 4.1.1. 

Methods      AUC  
True skill 

statistic (TSS)  
Deviance  

Generalized 

linear model 
0.85 0.62 0.89 

According to the response curves for environmental 

variables in the model, the probabilities for the presence 

of the world could be assessed. The likelihood of Ae. 
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aegypti presence exhibited sharp decreases with the 

increase of annual precipitation (mm) (bio12) and the 

altitude (Alt). The probability of the presence of Ae. 

aegypti increased in response to temperature seasonality 

(bio4), gradually as shown in Figure 3.  

 

Figure 3: Response curves of the most important 

predictor variables used in distribution modelling of 

Ae. aegypti. 

Climatic suitability under current and future climate 

change current potential distribution of Ae. aegypti 

The models using three bioclimatic variables exhibited 

varied results for predicting the areas climatically suitable 

to Ae. aegypti establishment under current and future 

climate scenarios. The results revealed that the current 

potential distribution map for Ae. aegypti in the world 

shown in Figure 4. In Africa, the models showed very 

high and excellent habitat suitability of Ae. aegypti in the 

counties of middle Africa ranges from Ethiopia in the 

east to Mali, Chad, and Guinea in the west. While 

moderately suitable areas for Ae. aegypti in the north and 

South Africa. In Asia, China, North and South Korea, and 

southern parts of Japan illustrated no suitability for the 

distribution of Ae. aegypti in the present time.   

In Europe, the resulting models revealed low suitability 

throughout major European lands, including Italy, 

France, Spain, Portugal, Netherlands, England, Greece, 

and Turkey except for the United Kingdom, which are 

moderately suitable habitats for Ae. aegypti. In North 

America, the resulting current models indicated low 

suitability in Ae. aegypti distribution over its land except 

for some parts of US, eastern–southern coast of Mexico 

showed moderately suitable habitat and Central America 

appeared very high and excellent suitability. South 

America, Brazil, Uruguay, and Colombia illustrated very 

high suitability in the resulting models while Chile 

showed moderately suitable habitat. Finally, middle 

Australia illustrated moderate suitability, but areas near 

boundaries in north and south appeared high suitability 

for the distribution of Ae. aegypti (Figure 4).  

 

Figure 4: Predicted current distribution range of Ae. 

aegypti. 

Predicted future potential distribution areas of Ae. 

aegypti 

The models for the potential distribution of Ae. aegypti 

under future climate change scenarios BCC-CSM2-

MR_ssp126 and ssp585 for the years 2030 and 2090 are 

illustrated in Figure 5.   

Distribution patterns throughout the scenarios between 

the present-day and future models showed reasonable 

similarities except in some regions. Furthermore, the 

future predictions showed some differences between 

BCC-CSM2-MR in 2030 and 2090.  

The calibration maps of current and future predictions for 

two different BCC-CSM2-MR_ssp126 and ssp585 in 

2030 and 2090 are used to summarize the level of 

changes in Ae. aegypti distribution owing to global 

warming (Figure 5).   

Under low hypothetical emissions of greenhouse gases 

(GHG) (BCC-CSM2-MR_ssp126 in 2030 and 2090), 

changes are simple and usually not notable on all 

continents. Although the species will lose some of their 

habitats as in Mauritania, Mali, Niger, Chad, West 

France, West Germany, central parts of India, the western 

area of US of America and North Spain. Some regions 

will gain such as Sudan, South Yemen, East Oman, some 

parts of Ethiopia, Finland and some parts of Australia 

(Figure 5 A and B).  

Additionally, for the highest hypothetical emissions of 

GHG (BCCCSM2-MR_ssp585 in 2030 and 2090), the 

insect will lose and gain almost the same area as in 

(BCC-CSM2-MR_ssp126 in 2030). The model suggests 

that under hypothetical emissions the insect invades large 

areas of India, South China and some parts of Bangladesh 

and Myanmar (Figure 5 C and D). 
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Figure 5 (A-D): Calibration maps showing gain and 

loss in habitat suitability of Ae. aegypti through the 

four future scenarios against the current status: BCC-

CSM2MR_ssp126_2021-2040, BCC-CSM2-

MR_ssp126_ 2080-2100, BCC-CSM2MR_ssp585_ 

2021-2040 and BCC-CSM2-MR_ssp585_ 2080-2010. 

The calibration maps of the two IPSL-CM6A-LR ssp126 

and ssp585 forecasts for the years 2030 and 2090 are 

used to illustrate the level of changes in the distribution 

of Ae. aegypti is caused by global warming (see Figure 

6). Although Ae. Aegypti will lose some of its habitat 

such as Mauritania, Mali, Niger, Chad, West France, 

West Germany, and some parts of Australia, it will gain 

other areas of the world including North Australia, Oman, 

and Angola under low hypothetical emissions of 

greenhouse gases (GHG) (IPSL-CM6A-LR ssp126 in 

2030 and 2090). (Figure 6 A and B).  

 

 

 

 

Figure 6 (A-D): Calibration maps showing gain and 

loss in habitat suitability of Ae. aegypti through the 

four future scenarios against the current status with, 

IPSL-CM6ALR_ssp126_2021-2040, IPSL-CM6A-

LR_ssp126_2080-2100, IPSL-CM6ALR_ssp585_ 

2021-2040, and IPSL-CM6A-LR_ssp585_ 2080-2100. 
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Furthermore, under the highest possible GHG emissions 

(IPSLCM6A-LR ssp585 between 2030 and 2090), the 

insect loses significant portion of its range, while other 

regions develop into suitable habitats. IPSLCM6A-

LR_ssp585 (2081-2100) is the worst scenario in which 

the insect invades a wide range of the world including 

some parts of northern Australia, India, South China and 

some parts of Bangladesh, South Pakistan, South Iran and 

loses host range in some regions including West 

Germany, West France, North America and South 

Australia (Figure 6 C and D).  

DISCUSSION  

The most important bioclimatic variables affecting the 

presence of Ae. aegypti were altitude (Alt), temperature 

seasonality (bio4), and annual precipitation (mm) (bio12). 

These results were similar to those of previous research.15 

These variables could play a pivotal role in the 

distribution of Ae. aegypti. The main effects of climate 

change on endemic mosquitoes are variations in rainfall 

and temperature. An increase in precipitation generally 

increases the potential egg-laying and larval habitat for 

mosquitoes in the environment.  

Relationship is frequently non-linear, with above-average 

rainfall typically increasing mosquito populations by 

increasing the availability of standing water, while 

excessive or violent precipitation may have a leaching 

effect by destroying mosquito eggs and flushing larvae 

out of particular habitats.35 Elevated temperature can 

speed up the development of immature stages rates of 

mosquito life cycle, increasing reproduction rates and 

causing exponential population growth.36 High 

temperatures help increase mosquito abundance and 

accelerate mosquito development, but they also help to 

rapidly amplify viral replication in mosquitoes. This is in 

agreement with other research that reported 

environmental temperature is one of the most important 

abiotic factors influencing physiology, behavior, ecology 

and by extension, survival of insects.37,38  

Larval development duration, larval and adult survival, 

and gonotrophic cycle time of the main dengue vector, 

Ae. aegypti, are directly affected by climactic conditions 

like rainfall, ambient temperatures, and relative 

humidity.39 In addition, the threshold effects of climate on 

dengue in Taiwan were studied and found that the larval 

and adult density of Ae. aegypti has a positive correlation 

with rainfall and temperature.40 Climatic changes affected 

by temperature change influences insect reproduction, 

and development behavior.41,42   

An increase in temperature of climate change scenarios 

decreased the pathogen development period inside the 

vector until it is capable of being transmitted and 

increased the global distribution of Ae. aegypti by 

accelerated adult emergence.43-45 Based on the GCMs of 

various climate change scenarios, numerous studies have 

predicted future Aedes mosquito distributions and dengue 

risks, including regional and global predictions.46-49  

Analysis of the predictions made by multiple models for 

the same scenario reveals that the outcomes of the 

forecasts vary. For instance, in the current scenario, the 

predicted results of the BCC-CSM1 model indicated that 

the area of Ae. aegypti that is moderately suitable for 

human habitation will decrease in the future, whereas the 

predicted results of the future model indicated that it 

would slightly increase in the future.  

With an increase in numbers and populations of endemic 

species, climate change will likely have an impact on 

how widely endemic mosquitoes transmit viruses in 

future.  

The possible changes by the results of the climate change 

modeling give an overview of the potential future 

distribution of Ae. aegypti and dengue transmission. 

Some areas where mosquito and dengue currently occur 

may become climatically unsuitable as the climate 

changes. All the scenarios considered in this study 

indicate an overall contraction in the climatically suitable 

areas for Aedes in the future. Some of this reduced 

potential area for Ae. aegypti and dengue covers currently 

important hotspots. These results may be useful in 

making informed choices about the allocation of 

resources for mosquito control by highlighting areas 

where climate suitability is expected to decrease in the 

future. This study has identified new areas of the world 

that may be at risk for Ae. aegypti and dengue 

transmission due to changes in climate in the future, 

which may warrant strategic control measures to prevent 

its spread. Such places might need a more thorough risk 

analysis of mosquito transmission. Projections of habitat 

appropriateness are crucial for the assessment and 

management of mosquito risk so that danger levels can be 

determined. Such analyses must include the response of 

Ae. aegypti and dengue transmission to climatic 

variations. This study specifically identifies locations that 

are at risk now and will remain at risk from the mosquito 

in the future. Our results are helpful in making informed 

decisions in prioritizing areas for eradication, and for 

determining areas for pest control by health managers.   

It is difficult to predict how other MBDs (e.g., Zika, 

yellow fever and chikungunya) will react to climate 

change since different MBDs-mosquitoes, reservoirs, and 

the environment-have different reliance on it. Therefore, 

even a small degree of climate change may result in 

significant increases in arbovirus transmission. Each 

MBD also has its own distinct transmission cycles, 

reservoirs, and vectors. These might only be found in 

localized areas worldwide, so changes in the prevalence 

of MBDs will vary from one region/environment to 

another.   
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CONCLUSION  

GIS techniques and climatological data can be used when 

creating models to evaluate the habitat suitability of 

particular insect pest species. We have successfully 

modelled the current and future Ae. aegypti global 

distribution in our work. The models identified existing 

at-risk areas and other regions with adequate habitat that 

could experience future Ae. aegypti incursions with a 

spatial resolution of 5 km2 across the globe. Control of 

Ae. aegypti is difficult and costly, and vaccines are 

unavailable for some viruses it transmits e.g. 

chikungunya virus, thus practical management solutions 

are needed. Decision-makers and quarantine authorities 

may find these model patterns and their changes over 

time useful when deciding whether to accelerate adaptive 

management initiatives for pests that seriously affect 

human health.  

It is projected that endemic mosquito populations around 

the world and consequently MBDs like Zika, dengue 

fever, yellow fever and chikungunya will be significantly 

impacted by climate change. The model we have 

developed also opens the door to more in-depth local 

research, particularly in regions that are expected to be 

highly suitable to mosquitoes such as Ae. aegypti.  

The predictive accuracy of the model’s local resolution 

for these disease transmission vectors can be further 

improved by incorporating ecological parameters such as 

altitude and meteorological variables.  
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