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INTRODUCTION 

In every country, non-communicable and CDs are 

currently the leading cause of adult mortality, and 

over the next ten years, this number is expected to rise 

by an additional 17%.1 About one-third of persons 

worldwide suffer from several chronic illnesses.2 

Previous Indian research show that at least one chronic 

illness affects 21% of India's elderly population. Chronic 

disease affects 29% of older people in urban settings and 

17% of senior people in rural areas. All chronic disorders, 

hypertension, and diabetes account for over 68%. Kerala 

(54%) has the highest rate of chronic disease prevalence, 

followed by Andhra Pradesh (43%) West Bengal (36%), 

and Goa (32%).  In the US, four out of ten persons 

have two or more CDs, and six out of ten adults have 

one or more.3 An estimated 35 million of the 58 

million fatalities that occurred in 2005 were predicted 

to be caused by chronic illnesses.1 Several unhealthy 

behaviors, including smoking, non exercising, eating 

poorly, and drinking too much alcohol, are significant 

causes of the most common chronic illnesses.4 In 

developed nations, the most common chronic illnesses 

are CVD and arthritis. heart attacks and strokes, diabetes, 

cancer (breast, colon, and epilepsy), obesity, and issues 

with the mouth. Senior citizens are afflicted with all these 

ailments. The increase in CDs is a grave concern for 

public health as well as the impacted societies and 

economies. The effect and profile of CDs were usually 

underappreciated until recently.5 

Microbes and humans interact in a variety of intricate 

ways. Since we now know that infectious agents can 

cause chronic illnesses and that the human microbiome 

plays a significant role in both health and disease, our 

understanding of the interactions between humans and 

microorganisms has undergone a fundamental shift. We 

are discovering that chronic disorders previously believed 

to be unrelated to infectious processes can also be caused 

by infectious agents. The world's most prevalent, 

expensive, and avoidable health issues, CDs have a 

staggering toll. Seven out of ten deaths annually are 

caused by CDs, which are also the major cause of 

disability and mortality. Each year, cancer, and CVD 

cause over half of all deaths.6 

Many CDs are not caused by infections; instead, their 

causes can be hereditary, environmental toxins, the 

combination of several behavioural and other risk factors, 

or an unidentified factor. Numerous mechanisms exist for 

infectious pathogens to induce chronic illness. CDs 

including Chlamydia infection and CVD can be brought 

on by inflammation brought on by infections or the 

immune system's reaction to infections.7 Early infection 
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can potentially result in long-term, irreversible 

impairments or deficiencies (e.g., paralysis following 

poliovirus infection). An indirect risk factor for chronic 

illness is infection; for example, a mother's sickness can 

put her offspring at risk for psychological problems. 

Finding the source of an infection that causes a chronic 

illness is crucial because it may enable early laboratory 

diagnosis, treatment, and significant potential for 

prevention.8-12  

GUT MICROBIOME AND AUTOIMMUNE 

DISEASE 

The causes of autoimmune disorders (AIDs) involves 

both genetic predispositions and environmental 

influences, with a disturbed gut flora garnering more 

interest. Numerous autoimmune disorders have been 

linked to functional and compositional alterations in the 

gut microbiota, and mounting data indicates that 

disruptions in this area may play a role in the 

immunopathogenesis of these conditions.9 

Rheumatoid arthritis 

Joint destruction is a symptom of rheumatoid arthritis 

(RA), it is a systemic autoimmune inflammatory disease. 

Recent research has shown that a variety of 

environmental factors, the most significant of which are 

nutrition, smoking, and infections, play a role in the 

development of both intestinal/oral dysbiosis and the 

onset and course of arthritis.9-11 Patients with RA also 

exhibit an increased abundance of Prevotella species at 

the compositional level, including Prevotella copri.12,13 

RA patients have lower levels of Faecal bacterium, a 

bacterium that is widely acknowledged to be helpful. 

Furthermore, it was discovered that RA patients had a 

higher relative abundance of Collinsella.14 It is interesting 

to note that severe arthritis is produced when mice 

sensitive to collagen-induced arthritis (CIA) are 

vaccinated with Collinsella. Collinsella aerofaciens is 

thought to be a potential arthritogenic bacterium in the 

human gut based on in vitro investigations that revealed 

the bacteria increases gut permeability and stimulates the 

release of IL-17A, a crucial cytokine involved in the 

pathogenesis of RA.14 In conclusion, patients with early 

RA have a gut microbiota dominated by Prevotella copri 

and Collinsella, which may have a role in the 

pathophysiology of the disease.15 Short-chain fatty acids 

(SCFAs) have been linked recently to autoimmune 

arthritis in mice, and it has been shown that SCFAs are 

crucial for reducing inflammation in RA.16,17 In RA 

models, mice lacking SCFA receptors displayed 

increased inflammation.18 One of the most prevalent 

SCFAs, butyrate, has been demonstrated to reduce 

inflammation in animal models of RA and other 

inflammatory illnesses. It functions as an endogenous 

histone deacetylase (HDAC) inhibitor.19 In mice with 

CIA, and maybe in patients with RA as well, recent study 

has demonstrated the importance of intestinal barrier 

function, particularly for zonulin, peptide that regulates 

epithelial tight junction permeability.20 Elevated zonulin 

levels have been linked to inflammation, dysbiosis, and 

leaky intestinal barrier. Restoring the intestinal barrier in 

time leading up to development of clinical arthritis may 

help postpone disease's onset and lessen its severity. This 

can be achieved using pharmacological treatments like 

zonulin antagonists/dietary supplements containing 

SCFA butyrate.  

Table 1: Autoimmune diseases summary table of key findings. 

Disease group Specific disease Gut microbes Main findings 

Autoimmune 

diseases 

RA 

Prevotella copri., Increased in abundance16,17 

Collinsella sp., Increased in abundance16 

Faecalibacterium sp. Decreased in abundance, links to SCFA production21 

Type-1 diabetes 

Dialister invisus, Gemella sanguinis., 

Bifidobacterium longum 

Increased in abundance (children), gut 

permeability21 

F. prausnitzii 
Decreased in abundance (children), butyrate (SCFA) 

production22 

Atopic eczema 

Clostridium difficile Increased in abundance23 

Escherichia coli Increased in abundance, eosinophilic inflammation23 

Staphylococcus aureus Increased in abundance23 

Bifidobacteria spp. Decreased in abundance23 

Bacteroidetes spp. Decreased in abundance24-26 

Coprococcus eutactus 
Decreased (in children), linked to butyrate 

production27 

F. prausnitizii Increased in abundance, SCFA production28 

Atopic asthma 

Various-Clostridium, Pediococcus, 

Escherichia, Klebsiella, Morganella, 

and Proteus spp. 

Increased in abundance, increased bioamine 

(histamine) production29 

Enterococcus faecalis, Streptococcus 

spp., Bifidobacterium bifidum., 

Lactobacillus spp. 

Increased in abundance, increased bioamine 

(histamine) levels, increased epoxide hydrolase 

production of oxylipins7,8  

  



Chandra M et al. Int J Sci Rep. 2024 Oct;10(10):375-382 

                                                              International Journal of Scientific Reports | October 2024 | Vol 10 | Issue 10    Page 377 

GUT MICROBIOME-GUT INFLAMMATION OR 

BOWEL DISORDERS 

Changes in bowel patterns and pain and discomfort in the 

abdomen are the main symptoms of syndrome of the 

irritable bowel (IBS). While the cause of the condition is 

complex, changes in the normal gut microbiota may 

contribute to the low-grade intestinal inflammation linked 

to it, according to new research on the pathophysiology 

of IBS.30 The pathophysiology of IBS is assumed to be 

influenced by microbial dysbiosis in the gut. A recent 

study found a distinct difference in the gut microbiota of 

IBS patients compared to controls. Firmicutes, notably 

Ruminococcin, Clostridium, and Dorea, were found in 

greater abundance in IBS patients, but beneficial bacteria 

like Bifidobacterium and Faecal bacterium spp were 

significantly reduced.31 Additionally, comprehensive 

reviews have shown that people with IBS have 

potentially hazardous microbiota, such as members of the 

genus Bacteroides (phylum Bacteroidetes), family 

Lactobacillus, phylum Proteobacteria, and family 

Enterobacteriaceae. Numerous dangerous bacteria, 

including Salmonella, Escherichia, Shigella, and 

Campylobacter, are members of the Enterobacteriaceae 

family.32 These may indicate a shift in the intestinal 

environment or a history of intestinal illness in these 

people. Abdominal pain, bloating, and diarrhoea-three of 

the characteristic symptoms of IBS-have been linked to 

buy products from these potentially dangerous bacteria. 

The uncultured Clostridial group was the most 

consistently detected potentially "protective" bacterial 

group in IBS patients. Even though the relationship is not 

causative and it is unknown how a protective impact on 

IBS symptoms works. Gut mucosal health has been 

linked to the genus Faecal bacterium, particularly Faecal 

bacterium prausnitzii, which shares an order with the 

uncultured Clostridia. This bacterium was thought to be 

the primary butyrate-producing and anti-inflammatory 

organism.33 It also preserved the integrity of the intestinal 

barrier and decreased the symptoms of IBS in rats by 

mediating the expression of IL-17. 

Moreover, independent of the IBS subtype, there was a 

significant decrease in the genus Bifidobacterium in IBS 

patients. As a result, it was yet another intriguing 

candidate genus for reducing IBS symptoms. IBS 

symptoms are reduced by Bifidobacterium-containing 

therapies, which are not observed in products that include 

Lactobacillus alone, according to a comprehensive 

evaluation of probiotics in IBS.34  

Restricting fermentable oligosaccharides, disaccharides, 

monosaccharides, and polyols (FODMAP) can help 

manage the symptoms of irritable bowel syndrome. The 

low-FODMAPS diet has been clinically proven to be 

effective in lowering symptoms of IBS.35 Since 

FODMAPs can alter microbial composition and 

microbial metabolite production, one effect of this dietary 

intervention is on the composition of the gut 

microbiome.36 Because not every IBS patient responds, 

and putting a low-FODMAPS diet into practice could be 

difficult. There has been a growing focus on the potential 

role of the gut microbiome in predicting the efficacy of 

the low-FODMAPS diet due to the role of the 

microbiome in metabolizing poorly absorbed 

carbohydrates, which depends on an individual's 

microbiome composition.37 New data suggests that there 

may be baseline differences in microbiome activity and 

composition that can distinguish between low-

FODMMAP diet responders and non-responders. 

Inflammatory bowel disease (IBD) is primarily 

characterized by chronic inflammation and colon 

ulceration, which are also characteristics of ulcerative 

colitis (UC) and Crohn's disease (CD). The hallmark of 

IBD, which includes ulcerative colitis and Crohn's 

disease, is recurrent, chronic inflammation of the GI tract. 

It is generally accepted that a widespread microbial 

dysbiosis in the gut, rather than a particular causative 

organism, is what causes the beginning of both 

illnesses.38 Numerous studies have suggested a role for 

gut microorganisms in the manifestation of IBD, and the 

gut microbiota is believed to be a crucial component in 

the formation of mucosal lesions. Previous research has 

demonstrated changes in the gut microbiota's 

functionality and composition in individuals with IBD as 

opposed to those without the disease. A reduction in the 

microbiota's stability and diversity is a common feature 

of microbial dysbiosis in IBD.39,40  

In particular, the most consistent finding from IBD 

microbiome investigations is a rise in Proteobacteria taxa 

and a decrease in Firmicutes. Additionally, compared to 

healthy control samples, a typical indicator of microbial 

dysbiosis in IBD patients, particularly in (active) CD, is 

the decreased number of Firmicutes bacteria from the 

families Ruminococcaceae and Lachnospiraceae.41 Since 

most butyrate-producing bacteria in the human gut are 

members of these families, they are significant functional 

components of the gut microbiota. Thus, the observed 

disruption on a functional level, such as a reduced ability 

of the IBD microbiota to produce butyrate, can be 

associated with the depletion of these bacterial groups in 

IBD.42 Furthermore, a study utilizing metagenomic and 

proteomics techniques in the ileal CD microbiota 

revealed a decrease in metagenomic reads and proteins of 

significant butyrate producers, Faecalibacterium 

prausnitzii and Roseburia spp., as well as an 

underrepresentation of genes involved in SCFA 

generation.43 Because it provides colonocytes with their 

primary energy source, improves the integrity of the 

epithelial barrier, and reduces inflammation, butyrate 

offers therapeutic potential in the treatment of IBD. 

Consuming bacteria that produce butyrate to boost in situ 

butyrate production is an alternative probiotic strategy 

that has been the subject of recent observational and 

interventional investigations [44]. This may imply that 

addressing microbial dysbiosis using butyrate-producing 

bacterial supplements could help IBD patients regain gut 

homeostasis and overall health.  
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Table 2: Gut inflammation disorders summary table of key findings. 

Disease group Specific disease Gut microbes Main findings 

Gut 

inflammation 

disorders 

Irritable bowel 

syndrome 

Ruminococcus spp., Clostridium 

spp., Dorea spp. 
Increased in abundance45 

Bifidobacterium spp. 
Decreased significantly in abundance 

(all IBS subtypes)37,45 

Faecal bacterium spp. 
Decreased in abundance, anti-

inflammatory, butyrate production36,45 

Enterobacteriaceae spp. 
Increased, links to previous intestinal 

infection and pathogen byproducts46 

Lactobacillus spp., Bacteroides spp. Increased in abundance46 

IBD 

Ruminococcaceae spp., 

Lachnospiraceae spp. 

Decreased in microbiome, butyrate 

production42-44 

Faecalibacterium prausnitzii, 

Roseburia spp. 

Decreased in microbiome, butyrate 

production45 

 

 

Chronic kidney disease 

Research on the makeup of the gut microbiota in CKD 

patients and the processes by which gut dysbiosis 

advances the disease are of increasing interest. Both CKD 

and the gut microbiota have a reciprocal effect on the gut-

kidney axis, with the former greatly altering the latter's 

composition and functioning.47 On the other hand, 

through inflammatory, endocrine, and neurologic 

pathways, the gut microbiota can influence the processes 

that lead to the onset and progression of CKD. Therefore, 

by focusing on the gut microbiota, new therapies to stop 

the progression of CKD may be made possible by 

understanding the intricate relationship between these 

two organs. CKD has been linked to changes in the 

intestinal microbiota, such as a decrease in microbial 

richness, variety, and uniformity.48 The intestinal levels of 

Enterobacteriaceae, specifically Enterobacter, 

Klebsiella, and Escherichia, as well as Enterococci and 

Clostridium per fringes, are higher in patients with CDK, 

while the colonization of Bifidobacterium spp., 

Lactobacillus, Bacteroides, Akkermansia, and Proteaceae 

genera is lower.49,50 A changed microbiota in CKD may 

increase chronic systemic inflammation, as suggested by 

the negative correlation found between plasma IL-10 

levels and the decrease in the abundance of the essential  

 

probiotic Akkermansia muciniphilla in CKD patients. The 

development of chronic systemic inflammation is a 

significant risk factor for CKD. Dietary fibre 

consumption is reduced in CDK patients, which is a 

characteristic that is necessary for the formation of 

SCFAs. Reduced dietary fibre raises amino nitrogen 

levels, which the gut microbiota can convert to uremic 

toxins.51 An imbalance favouring proteolytic microbiota 

over fermentative microbiome is characteristic of CDK 

patients. In addition to having negative consequences, 

imbalance in favor of proteolytic species is essential to 

development of CKD. Additionally, it was discovered 

that patients' serum and feces contained less of the major 

SCFAs, particularly butyrate, as their CKD progressed.52 

Nevertheless, more investigation is required to ascertain 

whether raising circulating SCFA levels might directly 

help CDK patients' clinical outcomes. Prebiotic, 

probiotic, and symbiotic supplementation has been found 

to have positive effects on the gut microbiota-renal axis 

in several experimental and clinical trials. These have 

come to light as a possible therapeutic intervention to 

correct dysbiosis of gut microbiota, lessen oxidative 

stress/inflammation markers, and regulate gut-derived 

uremic toxins, like trimethylamine N oxide (TMAO), 

indoxyl sulphate (IS), and PCS, which have been linked 

to advancement of CKD.53-55 

Table 3: CKD summary table of key findings. 

Disease  

group 

Specific  

disease 
Gut microbes Main findings 

CKD 

- 

Bifidobacterium,  

Lactobacillaceae,  

Prevotellaceae 

Decreased in abundance, SCFA producers 

associated with anti-inflammatory 

cytokines.56,57 

- Enterobacter Increased in abundance.57 

- Klebsiella 

Increased in abundance, pathogen associated 

with inflammatory disease states including 

Crohn’s.56, 57 

- Clostridium perfringes 
Increased in abundance, pathogen associated 

with intestinal diseases.56 
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MENTAL HEALTH DISORDERS 

The "gut-brain axis" refers to the connections between 

gut microorganisms and neurological functions that have 

been demonstrated to affect each other.58 Three main 

avenues exist via which the gut microbiota communicates 

with the brain: the neural pathway (by the vagus nerve 

and enteric nervous system), the immunological pathway 

(via cytokines), and the endocrine pathway (via the HPA 

axis and gut hormones). A compromised state of this 

relationship may result in the emergence of mental 

illnesses. Mental health illnesses may be exacerbated by 

common gut microbial species from the genera 

Bacteroides and Bifidobacterium, as well as the phylum 

Firmicutes and Actinobacteria.59 The gut-brain axis is 

modulated by gut microbiota in a variety of direct and 

indirect ways. This includes generating a wide range of 

metabolites, such as neurotransmitters, SCFAs, and 

amino acids, and preserving gut permeability by adjusting 

the integrity of tight junctions in the gut epithelium. 

These metabolites from the gut can enter circulation and 

impact the brain, or they can operate locally on the 

enteric nervous system to affect the central nervous 

system. Additionally, changes in the levels of gut 

microbial metabolites, including tryptophan, histamine, 

ammonia, and SCFAs, have been linked to several 

neurological conditions, including Parkinson's disease 

(PD), anorexia nervosa (AN), Alzheimer's disease (AD), 

autism spectrum disorder (ASD), and chronic stress and 

depression.60-62 These relationships may be direct or 

indirect. More research is necessary to determine if the 

breakdown of homeostasis in mental health disorders is 

the result of or the cause of changes in the gut microbiota 

and its functions.  

Considering the available data, numerous investigations 

have been conducted to precisely target the gut 

microbiota using various therapeutic approaches, such as 

the administration of pre- and probiotics (psych biotics) 

to treat mental health conditions and their symptoms.63,64 

Probiotic combinations of lactobacilli and Bifidobacteria 

have been shown in human-intervention studies with 

psychotics to significantly reduce psychological 

distress.65 improve communication and cognition in 

patients with ASD and AD. and alleviate symptoms in 

patients with PD.66  

Table 4: Mental health disorders summary table of key findings. 

Disease group Specific disease Gut microbes Main findings 

Mental health 

disorders 

SCZ, ADHD Lactobacillus spp, Bifidobacterium 

Increased in abundance in specific 

disorders such as SCZ and 

ADHD.67,68 

General anxiety 

disorder (GAD) 

Bacteriodetes, Ruminococcus 

gnavus, and Fusobacterium 

bacteroidaceae, Enterobacteriaceae, 

and Burkholderiaceae 

Decreased in abundance in general 

anxiety disorder (GAD). Increased 

in abundance in GAD.69,70 

Post- traumatic stress 

disorder (PTSD) 

Actinobacteria, Lentisphaerae, and 

Verrucomicrobia 

Decreased in abundance in post-

traumatic stress disorder (PTSD).71 

Depression 

Eggerthella., Holdemania, 

Turicibacter, Paraprevotella 

prevotella, Dialister 

Increased in abundance amongst 

individuals with depression.72,73 

Decreased in abundance amongst 

individuals with depression.74 

 

CONCLUSION  

The gut microbiota and CDs, such as inflammatory 

autoimmune disorders, gut inflammation-related 

disorders, and cardiometabolic diseases, have been 

clearly linked in the last ten years of research involving 

both human and animal investigations. It is becoming 

more and more evident that bacterial metabolites play a 

major role in the impact of the gut microbiome on human 

health, at least in part. Of these metabolites, SCFAs seem 

to be the most significant. Bacteria that produce butyrate 

have been linked to a decreased risk of irritable bowel 

syndrome, inflammatory autoimmune diseases, and 

cardiometabolic disorders.  

Although there are several potential treatment approaches 

that target the gut microbiome, dietary modifications 

seem to be the most obvious, quick, non-invasive strategy  

 

to modify the makeup and function of the gut 

microbiome. Recent RCTs have demonstrated that certain 

dietary treatments have a consistent effect on both 

composition and function. When dietary fibre and 

unsaturated fat are consumed together or in a balanced 

diet like the Mediterranean diet, butyrate-producing 

bacteria are found in larger relative abundances. The 

resulting SCFAs and these bacteria lead to better health 

outcomes. distinct dietary fibre kinds cause distinct 

bacterial alterations and SCFAs. Within the next five 

years, it should be possible to create dietary interventions 

that are particularly aimed at raising specific bacterial 

metabolites to enhance the outcomes related to 

inflammation, metabolism, and cardiovascular health. 
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