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INTRODUCTION 

Blasius initiated the investigation of boundary layer flow 

on a plane surface.
1
 Sakiadis studied the flow of 

boundary layer on a mobile surface in a tranquil fluid.
2
 

The equations achieved in both studies were similar but 

the boundary conditions were different. Abdel Hafez 

examined the flow of boundary layer on a mobile flat 

plate in a parallel stream.
3
 However, he only discussed 

the case when the movement of mean stream and surface 

was in similar direction.  

Afzal et al introduced the composite velocity and devised 

a single set of equations.
4
 Moreover, he also discussed the 

case when free stream and surface move in converse 

directions. Ashak et al examined the flow and heat 

transfer phenomenon over a mobile permeable surface in 

parallel stream.
5
 Aziz reported the flow of boundary layer 

on a plane surface with convective surface boundary 

condition.
6
 Bataller analyzed the impacts of thermal 

radiation and convective surface heat transfer in both 

Blasius and Sakiadias flow.
7
 Makinde studied the effects 

of buoyancy force over a stationary plate and the internal 
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heat generation effects on moving vertical plate under 

convective boundary condition.
8,9

 

The irreversibility effects in flow and heat transfer 

processes can be quantified through entropy analysis. It is 

a significant tool which can be utilized to deduce about 

the energy losses. Bejan introduced the method to study 

the irreversibility impacts by using the entropy generation 

rate as a standard tool. He reported that various sources 

like magnetic field effects, fluid friction, heat transfer 

along with temperature gradient etc. are accountable for 

entropy production.
10,11 

Later on, entropy generation in 

flow and heat transfer over still and kinetic surfaces 

attracted the attention of many researchers. Influence of 

magnetic field on local entropy generation as a result of 

laminar flow over a levelled plate was inspected by Al-

Odat et al.
12

 The entropy generation in laminar falling 

liquid film besides an inclined permeable heated plate 

was observed by Saouli.
13

 Esfahani and Jafarian analyzed 

entropy of boundary layer flow over a plane plate by 

using different techniques.
14

 Makinde and Osalus studied 

the influence of entropy generation in a liquid film falling 

besides a leaned porous hot plate.
15

 Makinde studied 

entropy of non-Newtonian liquid film along a leaned 

plate with constant temperature under gravity.
16

 

Reveillere and Baytas examined the reduction of entropy 

generation in flow of boundary past a porous plate.
17

 The 

effect of entropy over magneto-hydrodynamic and heat 

flows were studied under convective boundary condition 

by Makinde.
18

 Also, he investigated the entropy effects 

on a plane plate with fluctuating viscosity, in the 

existence of thermal radiation.
19

 Butt et al. explored the 

impact of entropy generation in Blasius flow under 

thermal radiations.
20

 Bejan devised a strategy to enhance 

and upgrade the disarray produced during a phenomenon. 

Features of heat, entropy generation and MHD can be 

seen in renowned studies given in Refs.
21-33

 

The goal of current study is to explore the irreversibility 

effects within flow and heat transfer across a mobile 

plate. Thermal radiation and convective boundary 

conditions were applied during this research venture. 

Results of numerically obtained solutions are analyzed 

via graphs and discussed for both cases, when the 

movement of plate and free stream is in the same and 

opposite directions. 

METHODS 

Mathematical formulation  

Let us take an account of a steady, two dimensional 

laminar flow of incompressible viscous fluid past over a 

plane plate moving with fixed velocity Uw in similar or 

converse direction to the free stream with velocity U∞. 

The x-axis is taken along the plate and the y-axis is 

normal to the plate. The stream temperature of cold fluid 

is denoted by T∞ and the base of the plate is warmed by a 

hot fluid at temperature Tf, which gives a heat transfer 

coefficient hf. 

Then the equations governing the flow and heat transfer 

are as follow 
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The boundary conditions for the velocity field are: 

,     0    at  0,

     as      .

wu U v y

u U y

  

      (4) 

The boundary conditions for temperature at the surface 

and far into the cold fluid are: 
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     as     .
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Here u and v denotes the x and y components of the 

velocities respectively, ρ is fluid density, Cp represents 

the specific heat at constant pressure, v is the kinematic 

viscosity of the fluid, k is the thermal conductivity of the 

fluid, qr is the radiative heat flux, T is the fluid 

temperature in the boundary layer, Tw is the uniform 

temperature on the top surface, T∞ is the temperature of 

the ambient cold fluid. Then obviously Tf >Tw >T∞.(  

 )  ∑ ( 
 
)      

 

   
 

Using the Rossel and approximation for radiation, the 

radiative heat flux can be simplified as  

4

1

1

4
,

3
r

T
q

k y

 
 

      (6) 

Where k1 and σ1 are the mean absorption coefficient and 

Stefen-Boltzmann constant respectively. In order to 

express T
4
 as a linear function of temperature, the 

temperature differences within the flow are assumed 

sufficiently small.  

This is carried out by expanding T
4
 in a Taylor series 

about the temperature T∞ while higher order terms are 

neglected. As a result following approximation are 

achieved. 
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4 3 44 3 .T T T T  
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By using (6) and (7) in Equation (3), we get 
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The energy equation obtained by introducing (8) in (3) is 
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where α=
 

   
 is the thermal diffusivity. If NR= 

   

     
   is 

considered as the radiation parameter, Eq. (9) becomes 
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with k0=
   

     
  When k0=1, the thermal radiation effects 

are not taken into account. 

Similarity transformations for velocity and temperature 

fields are introduced as 

1
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where prime represents derivatives with respect to Ƞ and 

U= Uw+U∞. Using Eq. (11), Eqs. (2) and (10) take the 

form 

1
0,

2
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                               (12) 

0
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2
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where Pr=
 

 
. In order to attain the similarity solution of 

(1-5), we assume that 

1/ 2

fh cx
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The non-dimensional boundary conditions are 
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where r=
  

 
 is the velocity ratio parameter and a=

 

 
√
 

 
  is 

the convective parameter.  

It is noticed that if we take r=0 and k0=1 the current 

problem reduces to that of Aziz.
6 

The case 0<r<1, represents the movement of plate and 

fluid in the same direction whereas  

1<r<0 corresponds to their movement in opposite 

direction. Free stream moves along positive x-axis while 

the movement of plate is directed towards negative x-axis 

when r<0 however the movement of plate and free 

stream is reverse for the case when r>1. 

Entropy generation 

The volumetric entropy generation rate for viscous fluid 

under thermal radiation is denoted and defined as follow 
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Eq. (16) clearly shows that there is participation of three 

sources of entropy generation.  

The first, second and third terms on right side represent 

the entropy generation rate due to heat transfer, thermal 

radiation and fluid friction respectively.  

The dimensionless numbers for Ns are be defined as 

0
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 Irreversibility parameter Bejan number can be defined as 

Be= 
                                       

                        
            (18) 

Eq. (18) shows that the Bejan number ranges from 0 to 1. 

The fluid friction causes the dominance of irreversibility 

for zero value of Bejan number while irreversibility 

dominates the flow system for Be=1. Both factors 

contribute equally to entropy generation in the case when 

Be is equal to half. 

RESULTS 

Shooting technique is used to attain the numerical 

solution of differential equations (12) and (13) under the 

boundary conditions (14), (15) and symbolic software 

MATHEMATICA is utilized to carry out the 

calculations. The results for Ɵ(0) and Ɵ´(0) are compared 

with those given by Aziz in Table 1 in absence of thermal 
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radiation and r=0 in order to check the validity of our 

work.
6
 The results obtained were concordant with 

previous studies which further authenticate our results. 

The impacts of physical parameters appeared in 

governing equations on velocity and temperature profiles 

when plate and free stream are moving in same and 

opposite directions are elucidated through graphs. 

Furthermore, Bejan number Be and entropy generation 

number Ns are plotted to observe that which parameter is 

responsible for more entropy production. 

In Figure 1, the velocity profile is presented against Ƞ for 

various values of velocity ratio parameter r. It is observed 

that for r<0.5, ƒ´(Ƞ) increases with Ƞ. However for 

r<0.5, a decrease in velocity profile is observed. For 

r=0.5, the surface velocity and free stream velocity are 

equal. 

Table 1: Comparison of our results of Ɵ (0) and Ɵ´ (0) with those reported by Aziz when k0= 1 and r=0.
6 

 Pr=0.72 Pr=10 

a 
Ɵ (0) 

Aziz
6 

Ɵ (0) 

Present 

Ɵ´(0) 

Aziz
6 

Ɵ´ (0) 

Present 

Ɵ (0) 

Aziz
6 

Ɵ (0) 

Present 

Ɵ´ (0) 

Aziz
6 

Ɵ (0) 

Aziz
6 

0.05 0.1447 0.1447 0.0428 0.0428 0.0643 0.0643 0.0468 0.0468 

0.10 0.2528 0.2528 0.0747 0.0747 0.1208 0.1208 0.0879 0.0879 

0.20 0.4035 0.4035 0.1193 0.1193 0.2155 0.2155 0.1569 0.1569 

0.40 0.5750 0.5750 0.1700 0.1700 0.3546 0.3546 0.2582 0.2582 

0.60 0.6699 0.6699 0.1981 0.1981 0.4518 0.4518 0.3289 0.3289 

0.80 0.7301 0.7301 0.2159 0.2159 0.5235 0.5235 0.3812 0.3812 

1.0 0.7718 0.7718 0.2282 0.2282 0.5787 0.5787 0.4213 0.4213 

5.0 0.9441 0.9441 0.2791 0.2791 0.8729 0.8729 0.6356 0.6356 

10.0 0.9713 0.9713 0.2871 0.2871 0.9321 0.9321 0.6787 0.6787 

20.0 0.9854 0.9854 0.2913 0.2913 0.9649 0.9649 0.7026 0.7026 

 

 

Figure1: Effects of velocity ration parameter r on 

ƒ´(Ƞ). 

 

Figure 2: Effects of Prandtl number Pr on Ɵ (Ƞ). 

 

Figure 3: Effects of radiation parameter NR on Ɵ (Ƞ). 

 

Figure 4: Effects of Biot number a on Ɵ (Ƞ). 
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The impacts of different parameters on temperature are 

shown in Figures 2-4 for both cases when the movement 

of plate and free stream are in alike and converse 

directions. The solid and broken lines represent the cases 

when the movement of free stream and plate is in 

converse and alike directions. The impacts of Pr against 

temperature profile are shown in Figure 2 which indicates 

the decline in temperature with the rise of Pr in both 

cases but this decline is more rapid when the direction of 

movement of free stream and plate is similar. Figure 3 

illustrates the impact of NR on temperature which shows 

the reduction in temperature for both cases. On the other 

hand, in Figure 4, a rise in temperature is observed with 

the rise in Biot number “a”. 

The imperative parameter known as Bejan number Be 

gives a view about the dominance of irreversibility of 

fluid friction over the transfer of heat and vice versa. 

 

Figure 5: Effects of radiation parameter NR on Ns. 

 

Figure6: Effects of Biot number a on Ns. 

Figures 5-7 represent the impacts of different parameters 

on Ns against Ƞ. Figure 5 depicts the effect of NR on Ns. 

It is observed that Ns rate near the surface is much higher 

when the movement of free stream and surface is 

opposite. Moreover, it can be deduced that Ns falls with 

the rise in NR. However these impacts are negligible. 

Figure 6 represents that Ns increases with Biot number a 

for both the scenarios. Figure 7 elucidates the influence 

of Br / Ω on Ns. However, irreversibility effects are much 

higher when the movement of free stream and surface is 

opposite because viscous effects are significant in this 

scenario. 

 

Figure 7: Effects of group parameter Br / Ω on Ns. 

 

Figure 8: Effects of radiation parameter NR on Be. 

Figure 8 represents the influence of Bejan number against 

different values of NR. When surface and free stream are 

moving in opposite directions, the surface and nearby 

region is fully dominated by the irreversibility of fluid 

friction with the rise in value of NR. These impacts are 

dominant in the region of free stream. For the case when 

surface and free stream are moving in same direction, an 

increase in value of NR causes fluid friction irreversibility 

to increase near the surface. However, these effects are 

less as compared to first case. 

Figure 9 depicts that irreversibility effects fall with the 

rise in Biot number a near the plate in both cases. 

Moreover, it is noticed that dominance of irreversibility 

effects is more prominent in the scenario when movement 

of surface and free stream is opposite. These effects are 

more prominent in boundary layer and free stream 

regions. 

Figure 10 elucidates the influence of Br / Ω on Be. A rise 

in value of Br / Ω results an increase in fluid friction 

irreversibility at the surface of plate and in the 

neighboring region. However, these effects are more 

significant in the case when the movement of plate and 
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free stream is opposite. In free stream region, heat 

transfer irreversibility effects are prominent. 

 

Figure 9: Effects of Biot number a on Be. 

 

Figure 10: Effects of group parameter Br / Ω on Be. 

DISCUSSION 

The irreversibility impacts on flow and heat transfer 

processes can be quantified through entropy analysis. It is 

a significant tool which can be utilized to deduce about 

the energy losses. The current study investigates the 

inherent irreversibility impacts during a flow of boundary 

layer and heat transfer on a mobile plate. Thermal 

radiation and convective boundary conditions were 

applied during this research venture. It is observed that 

irreversibility impacts are more remarkable when the 

movement of fluid and plate is in opposite direction. 

Moreover, irreversibility impacts of heat transfer are 

prominent in free stream region. 

CONCLUSION 

The focal findings of our study are mentioned below. 

For r<0.5, a rise in velocity is noted with the rise in 

distance Ƞ from the surface. However for r<0.5, a decline 

in velocity profile is noted. For r=0.5, the velocity of 

surface and free stream are same. A decline in 

temperature profile is noted with rise in values of Pr in 

both cases when the movement of surface and free stream 

is in similar and converse directions. A decrease in 

temperature is observed for both cases with increase in 

NR. With the rise in Biot number a, the temperature 

profile also increases. Entropy production rate near the 

surface is high in case when surface and free stream are 

moving in opposite directions as compared to case when 

surface and free stream are in same directions. Entropy 

generation number Ns decreases slightly with radiation 

parameter NR and increases with Biot number a and 

group parameter Br / Ω. Irreversibility effects and fluid 

friction become stronger at the surface of plate and in 

neighboring region with increase in values of NR and Br / 

Ω while it decreases with Biot number a.  
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