A meta-analysis evaluating the role of calcium channel alpha-2 delta-1 subunit in carcinogenesis


  • Chandan Raybarman Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Agartala, Tripura, India
  • Surajit Bhattacharjee Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Agartala, Tripura, India




Meta-analysis, Alpha2delta-1protein, Carcinogenesis


There is hardly found any study accumulating all the experiments reported with the expression of alpha-2 delta-1 (α2δ-1) in cancer cells. This meta-analysis aimed to advance our knowledge about the role of calcium channel alpha2 delta-1 subunit in carcinogenesis in the present time. PubMed searches for peer-reviewed articles were conducted using the keywords “α2δ-1 protein in oncogenesis”, “α2δ-1 protein expression in cancer cells”, and “α2δ-1 protein as cancer cell marker”. The databases were developed in accordance with PRISMA guidelines. Seventeen studies out of 80 citations met the inclusion criteria pertaining to α2δ-1 expression in different cancer cells. The cancer patterns were hepatocellular carcinoma in 41%, non-small cell lung carcinoma in 12% and laryngeal squamous cell carcinoma in 12%. The remaining studies included small-cell lung cancer (6%), gastric cancer (6%), pancreatic cancer (6%), hypopharyngeal squamous cell carcinoma (6%), breast cancer (6%) and glioblastoma multiforme (6%). α2δ-1+ cells had a higher sphere-forming and tumorigenic efficiency in 76.5% of experiments. 58.8% experiments explored mechanistically in self-renewal efficiency and tumorigenesis of α2δ-1+ cancer cells. The cancer cells expressing α2δ-1 have the potential to serve as cell surface markers for tumour-initiating cells and cancer stem cells. These intriguing findings open up a promising avenue for future research, focusing on the targeting of α2δ-1 as a potential therapeutic strategy for cancer treatment.


Metrics Loading ...


International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. 2020. Available at: https://www.iarc.who. int/news-events/latest-global-cancer-data-cancer-burden-rises-to-19-3-million-new-cases-and-10-0-million-cancer-deaths-in-2020/. Accessed on 15 November 2023.

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70.

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):28.

Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, et al. Tumour-initiating cells vs. cancer 'stem' cells and CD133: what's in the name? Biochem Biophys Res Commun. 2007;355(4):855-9.

Qureshi-Baig K, Ullmann P, Haan S, Letellier E. Tumor-Initiating Cells: a criTICal review of isolation approaches and new challenges in targeting strategies. Mol Cancer. 2017;16(1):40.

Kuşoğlu A, Biray Avcı Ç. Cancer stem cells: A brief review of the current status. Gene. 2019;681:80-5.

Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769-92.

Rueff J, Rodrigues AS. Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint. Methods Mol Biol. 2016;1395:1-18.

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26.

Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2(5):120066.

Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15:71.

Pardo LA. Voltage-gated potassium channels in cell proliferation. Physiology. 2004;19:285-92.

Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch Eur J Physiol. 2004;448:274-86.

Kunzelmann K. Ion channels and cancer. J Membr Biol. 2005;205:159-73.

Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov. 2009;8(12):982-1001.

Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev. 2012;92(4):1865-913.

Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev. 2018;98(2):559-621.

Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol. 2020;11:968.

Dolphin AC. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci. 2012;13(8):542-55.

Risher WC, Eroglu C. Emerging roles for α2δ subunits in calcium channel function and synaptic connectivity. Curr Opin Neurobiol. 2020;63:162-9.

Bauer CS, Tran-Van-Minh A, Kadurin I, Dolphin AC. A new look at calcium channel α2δ subunits. Curr Opin Neurobiol. 2010;20(5):563-71.

Li M, Zhang W, Yang X, An G, Zhao W. The α2δ1 subunit of the voltage-gated calcium channel acts as a potential candidate for breast cancer tumor initial cells biomarker. Cancer Biomark. 2021;31(3):295-305.

Ma Y, Yang X, Zhao W, Yang Y, Zhang Z. Calcium channel α2δ1 subunit is a functional marker and therapeutic target for tumor-initiating cells in non-small cell lung cancer. Cell Death Dis. 2021;12(3):257.

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, et al. Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One. 2013;8(3):e57020.

Sales KM, Winslet MC, Seifalian AM. Stem cells and cancer: an overview. Stem Cell Rev. 2007;3(4):249-55.

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8.

Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, et al. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14(1):123-9.

Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036.

Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett. 2010;584(9):1659-64.

Huang R, Wu D, Yuan Y, Li X, Holm R, Trope CG, et al. CD117 Expression in Fibroblasts-Like Stromal Cells Indicates Unfavorable Clinical Outcomes in Ovarian Carcinoma Patients. PLoS One. 2014;9(11):e112209.

Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett. 2010;584(9):1659-64.

Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504-14.

Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005;166(2):545-55.

Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res. 2005;319(1):15-26.

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396-401.

Uchida J, Imamura F, Kukita Y, Oba S, Kumagai T, Nishino K, et al. Dynamics of circulating tumor DNA represented by the activating and resistant mutations in epidermal growth factor receptor tyrosine kinase inhibitor treatment. Cancer Sci. 2016;107(3):353-8.

Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Proteomics. 2019;16(2):93-103.

Amhimmid Badr S, Waheeb Fahmi M, Mahmoud Nomir M, Mohammad El-Shishtawy M. Calcium channel α2δ1 subunit as a novel biomarker for diagnosis of hepatocellular carcinoma. Cancer Biol Med. 2018;15(1):52-60.

Liu Q, Dong Y, Yuan S, Yu M, Liu L, Zhang Q. Prognostic value of α2δ1 in hypopharyngeal carcinoma: A retrospective study. Open Med (Wars). 2021;16(1):1395-402.

Zhang Y, Zhao W, Li S, Lv M, Yang X, Li M, et al. CXCL11 promotes self-renewal and tumorigenicity of α2δ1+ liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett. 2019;449:163-71.

Han H, Du Y, Zhao W, Li S, Chen D, Zhang J, et al. PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells. Nature Comm. 2015;6:8271.

Zhang Y, Zhao W, Han H, Li S, Chen D, Zhang Z. MicroRNA-31 suppresses the self-renewal capability of α2δ1+ liver tumor-initiating cells by targeting ISL1. Oncotarget. 2017;8(50):87647-57.

Sun C, Shui B, Zhao W, Liu H, Li W, Lee JC, et al. Central role of IP3R2-mediated Ca2+ oscillation in self-renewal of liver cancer stem cells elucidated by high-signal ER sensor. Cell Death Dis. 2019;10(6):396.

Zhao W, Lv M, Yang X, Zhou J, Xing B, Zhang Z. Liver tumor-initiating cells initiate the formation of a stiff cancer stem cell microenvironment niche by secreting LOX. Carcinogenesis. 2022;43(8):766-78.

Yu J, Wang S, Zhao W, Duan J, Wang Z, Chen H, et al. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer. Clin Cancer Res. 2018;24(9):2148-58.

Sui X, Geng JH, Li YH, Zhu GY, Wang WH. Calcium channel α2δ1 subunit (CACNA2D1) enhances radioresistance in cancer stem-like cells in non-small cell lung cancer cell lines. Cancer Manag Res. 2018;10:5009-18.

Liu J, Tao M, Zhao W, Song Q, Yang X, Li M, et al. Calcium Channel α2δ1 is Essential for Pancreatic Tumor-Initiating Cells through Sequential Phosphorylation of PKM2. Cell Mol Gastroenterol Hepatol. 2023;15(2):373-92.

Fernández-Gallardo M, Corzo-Lopez A, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Sandoval A, et al. Role of the Ca2+ channel α2δ-1 auxiliary subunit in proliferation and migration of human glioblastoma cells. PLoS One. 2022;17(12):e0279186.

Gao Q, Zhang Y. CXCL11 Signaling in the Tumor Microenvironment. Adv Exp Med Biol. 2021;1302:41-50.

Morgan R, Pandha HS. PBX3 in Cancer. Cancers (Basel). 2020;12(2):431.

Li M, Sun C, Bu X, Que Y, Zhang L, Zhang Y, et al. ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis. 2021;12(6):620.

Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011;4(2):165-78.

Lavoie H, Gagno J, Therrien M. ERK signalling: a master regulator of cell behaviour, life and fate. Nature reviews. Mol Cell Biol. 2020;21(10):607-32.

Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216-33.

Bray SJ. Notch signalling in context. Nature reviews. Mol Cell Biol. 2016;17(11):722-35.

Baron M. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Memb Biol. 2017;34(1-2):33-49.

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-63.

Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, Peng C. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 2021;503:240-8.

Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(1):1-13.