DOI: http://dx.doi.org/10.18203/issn.2454-2156.IntJSciRep20163968

Deducing the proton energy configuration

William S. Oakley

Abstract


Articles published prior to 1994 by various authors indicate a mass energy sequence for the pion, muon, and electron in the ratios 4: 3: 2 respectively with increments of about 35.3 MeV, with the electron “rest mass” energy rotationally relativistic at α-1mec2, ~ 70 MeV. Considering 35.3 MeV rotationally relativistic by α-2/3 (≈ 26.58) extends the sequence to include the proton mass energy at 938 MeV, i.e. 26.58 x 35.3 MeV = 938.274 MeV. This observation leads to describing the proton as a single EM wave propagating in a toroidal path with volume contracted by α and thereby exhibiting unit charge in the far field, and evidencing partial charges in the near field consistent with the UUD quarks of the Standard Model. As with quantum chromodynamics (QCD), over 99% of the proton rest mass is relativistic in nature. A value for the proton radius is obtained within the empirical uncertaintys. 


Keywords


Proton mass energy, Proton energy configuration, Particle radius, Quantum mass sequence, QCD

Full Text:

PDF

References


Barut AO. The mass of the muon. Phys Lett B. 1978;73:310.

Barut AO. Lepton mass formula. Phys Rev Lett. 1979;42:1251.

Akers D. Dual field theory of strong interactions. Int J Theor Phys. 1987;26:613-20.

Akers D. Dirac monopole and Mac Gregor’s formula for particle lifetimes. Il Nuovo Cemento. 1992;105:935-9.

Nambu Y. An empirical mass spectrum of elementary particles. Prog Theor Phys. 1952;7:595-6.

Spaniol C, Sutton JF. Classical electron mass and fields Part III. Physics Essays. 1993;6(2):257-8.

Oakley WS. Analyzing the large number problem and Newton’s G via a relativistic quantum loop model of the electron. Int J Sci Rep. 2015;1(4):201-5.

Bernauer JC, Achenbach P, Ayerbe Gayoso C, Böhm R, Bosnar D, Debenjak L, et al. High Precision Determination of the Electric and Magnetic Form Factors of the Proton. Phys Rev Lett. 2010;105(24): 1-4.

Pohl R, Antognini A, Nez F, Amaro FD, Biraben F, Cardoso JMR, et al. The Size of the Proton. Nature. 2010;466:213-6.

Pohl R, Gilman R, Miller GA, Pachucki K, et al. Muonic Hydrogen and the Proton Radius Puzzle. Annual review of Nuclear and Particle Science. 2013;83:175-204.

Azonano. Researchers observe unexpectedly small Proton Radius. July 9, 2010

The Proton Radius Problem. Scientific American, 2014. Available at https://www.scientific American.

com/article/the-proton-radius-puzzle/. Accessed on 15 July 2016.

Carlson CE. The Proton Radius Puzzle. arXiv:1502.05314. 2015:1-28.

The Proton Just Got Smaller. Photonics.Com,2010. Available at http://www. photonics. com/ Article. aspx?AID=42905. Accessed on 12 July 2015.

Proton size puzzle reinforced! Paul Shearer Institute. Princeton University Press, 2013. Available at http://www.revolvy.com/main/index.ph

p?s=Proton. Accesseed on 20 June 2016.

Oakley WS. Resolving the Electron - Positron mass annihilation mystery. Int J Sci Rep. 2015;1(6):250.

Weise W, Green AM. Quarks and Nuclei. World Scientific. 1984; 65–6.

Mark R. Calculating the Mass of a Proton. CNRS international magazine, 2009. Available at http://www2.cnrs.fr/en/1410.htm. Accessed on 27 August 2014.

Perdrisat CF, Punjabi V, Vanderhaeghen M. Nucleon electromagnetic form factors. Progress in Particle and Nuclear Physics. 2007;59(2):694.