Effects of bisphenol A, phthalates and triclosan on gut microbiome and its impact on host pathophysiology across different species


  • Shreya N. Joshi Department of Biological Sciences, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be University), Mumbai, Maharashtra, India
  • Purvi Bhatt Department of Biological Sciences, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be University), Mumbai, Maharashtra, India




Gut dysbiosis, Endocrine disrupting chemicals, Bisphenol A, Phthalates, Triclosan, Species


Environmental pollutants like endocrine disrupting chemicals (EDCs), unhealthy lifestyle and genetic predisposition have a major impact on the gut microbiota leading to dysbiosis, thus causing chronic diseases. This narrative review highlights the impact of three most common EDCs, bisphenol A (BPA), phthalates and triclosan in terms of increase in opportunistic pathogens, alterations in host metabolic profiles and immune response and associated pathophysiological changes across different species. BPA exposure led to a significant increase in Bacteroides, Firmicutes, Proteobacteria and Akkermansia spp. in all species (mice, zebra fish, rabbits, humans and rats). Phthalates exposure showed diverse changes in gut microbiota. Infants showed increased abundance of Firmicutes and events of antibiotic resistance after triclosan exposure. Changes in amino acid metabolism and biosynthesis of purines, pyrimidines and serotonin were found irrespective of the EDC type. Associated pathophysiological changes included increase in inflammatory cytokines, disruption of intestinal barrier, colonic inflammation, etc. The evidence from this review reveals that EDCs cause dysbiosis in all species. Any of these species could be used as models to test potential preventive and therapeutic interventions. Overall, gut microbiome profile should be considered as part of screening for chronic diseases among susceptible individuals and aim towards restoring healthy microbiome.


Metrics Loading ...


Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions. Pharmacol Rev. 2019;71(2):198-224.

Rosenfeld CS. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front Cell Infect Microbiol. 2017;7:396.

Velmurugan G, Ramprasath T, Gilles M, Swaminathan K, Ramasamy S. Gut Microbiota, Endocrine-Disrupting Chemicals, and the Diabetes Epidemic. Trends Endocrinol Metab. 2017;28(8):612-5.

Rastelli M, Knauf C, Cani PD. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity (Silver Spring). 2018;26(5):792-800.

Szychlinska MA, Rosa M, Castorina A, Mobasheri A, Musumeci G. A correlation between intestinal microbiota dysbiosis and osteoarthritis. Heliyon. 2019;5(1):e01134.

Ontiveros Y, Páez S, Monteagudo C, Rivas A. Endocrine Disruptors in Food: Impact on Gut Microbiota and Metabolic Diseases. Nutrients. 2020;12(4):1158.

Vaiserman A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014;5(6):419-29.

Sever R, Glass CK. Signaling by nuclear receptors. Cold Spring Harb Perspect Biol. 2013;5(3):a016709.

Swedenborg E, Rüegg J, Mäkelä S, Pongratz I. Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol. 2009;43(1):1-10.

Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36(6):593-602.

Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241-58.

Szymanska K, Gonkowski S. Neurochemical characterization of the enteric neurons within the porcine jejunum in physiological conditions and under the influence of bisphenol A (BPA). Neurogastroenterol Motil. 2019;31(6):e13580.

Ma Y, Guo Y, Ye H, Zhang J, Ke Y. Perinatal Triclosan exposure in the rat induces long-term disturbances in metabolism and gut microbiota in adulthood and old age. Environ Res. 2020;182:109004.

Chiu K, Warner G, Nowak RA, Flaws JA, Mei W. The Impact of Environmental Chemicals on the Gut Microbiome. Toxicol Sci. 2020 Aug 1;176(2):253-84.

Yee AL, Gilbert JA. MicrobiomE. Is triclosan harming your microbiome? Science. 2016;353(6297):348-9.

Mahalak KK, Firrman J, Lee JJ, Bittinger K, Nuñez A, Mattei LM, et al. Triclosan has a robust, yet reversible impact on human gut microbial composition in vitro. PLoS One. 2020;15(6):e0234046.

Yang H, Wang W, Romano KA, Gu M, Sanidad KZ, Kim D, et al. A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Sci Transl Med. 2018;10(443):eaan4116.

Adamovsky O, Buerger AN, Vespalcova H, Sohag SR, Hanlon AT, Ginn PE, et al. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. Environ Sci Technol. 2020;54(9):5719-28.

Sanidad KZ, Xiao H, Zhang G. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health. Gut Microbes. 2019;10(3):434-7.

Feng D, Zhang H, Jiang X, Zou J, Li Q, Mai H, et al. Bisphenol A exposure induces gut microbiota dysbiosis and consequent activation of gut-liver axis leading to hepatic steatosis in CD-1 mice. Environ Pollut. 2020;265(Pt A):114880.

Chen L, Guo Y, Hu C, Lam PKS, Lam JCW, Zhou B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environ Pollut. 2018;234:307-17.

Deng Y, Yan Z, Shen R, Wang M, Huang Y, Ren H, et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ Int. 2020;105916.

Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, et al. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. Environ Int. 2021;146:106260.

Kaur S, Sarma SJ, Marshall BL, Liu Y, Kinkade JA, Bellamy MM, et al. Developmental exposure of California mice to endocrine disrupting chemicals and potential effects on the microbiome-gut-brain axis at adulthood. Sci Rep. 2020;10(1):10902.

Buerger AN, Dillon DT, Schmidt J, Yang T, Zubcevic J, Martyniuk CJ, et al. Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): Altered microbial diversity, functionality, and network connectivity. Environ Pollut. 2020;265(Pt B):114496.

Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, et al. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016;7(6):471-85.

Reddivari L, Veeramachaneni DNR, Walters WA, Lozupone C, Palmer J, Hewage MKK, et al. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites. mSystems. 2017;2(5):e00093-17.

DeLuca JA, Allred KF, Menon R, Riordan R, Weeks BR, Jayaraman A, et al. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp Biol Med (Maywood). 2018;243(10):864-75.

Malaisé Y, Menard S, Cartier C, Gaultier E, Lasserre F, Lencina C, et al. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development. Sci Rep. 2017;7(1):14472.

Gao B, Tu P, Bian X, Chi L, Ru H, Lu K. Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes. BMC Pharmacol Toxicol. 2017;18(1):46.

Xiong Z, Zeng Y, Zhou J, Shu R, Xie X, Fu Z. Exposure to dibutyl phthalate impairs lipid metabolism and causes inflammation via disturbing microbiota-related gut-liver axis. Acta Biochim Biophys Sin (Shanghai). 2020;52(12):1382-93.

Fu X, Han H, Li Y, Xu B, Dai W, Zhang Y, et al. Di-(2-ethylhexyl) phthalate exposure induces female reproductive toxicity and alters the intestinal microbiota community structure and fecal metabolite profile in mice. Environ Toxicol. 2021;36(6):1226-42.

Wang G, Chen Q, Tian P, Wang L, Li X, Lee YK, et al. Gut microbiota dysbiosis might be responsible to different toxicity caused by Di-(2-ethylhexyl) phthalate exposure in murine rodents. Environ Pollut. 2020;261:114164.

Yang YN, Yang YSH, Lin IH, Chen YY, Lin HY, Wu CY, et al. Phthalate exposure alters gut microbiota composition and IgM vaccine response in human newborns. Food Chem Toxicol. 2019;132:110700.

Lei M, Menon R, Manteiga S, Alden N, Hunt C, Alaniz RC, et al. Environmental Chemical Diethylhexyl Phthalate Alters Intestinal Microbiota Community Structure and Metabolite Profile in Mice. mSystems. 2019;4(6):e00724-19.

Ribado JV, Ley C, Haggerty TD, Tkachenko E, Bhatt AS, Parsonnet J. Household triclosan and triclocarban effects on the infant and maternal microbiome. EMBO Mol Med. 2017;9(12):1732-41.

Hirota R, Ohya Y, Yamamoto-Hanada K, Fukutomi Y, Muto G, Ngatu NR, et al. Triclosan-induced alteration of gut microbiome and aggravation of asthmatic airway response in aeroallergen-sensitized mice. Allergy. 2019;74(5):996-9.

Wang C, Yu Z, Shi X, Tang X, Wang Y, Wang X, et al. Triclosan Enhances the Clearing of Pathogenic Intracellular Salmonella or Candida albicans but Disturbs the Intestinal Microbiota through mTOR-Independent Autophagy. Front Cell Infect Microbiol. 2018;8:49.

Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish. PLoS One. 2016;11(5):e0154632.

Tun MH, Tun HM, Mahoney JJ, Konya TB, Guttman DS, Becker AB, et al. Postnatal exposure to household disinfectants, infant gut microbiota and subsequent risk of overweight in children. CMAJ. 2018;190(37):1097-107.

Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018;631-632:449-58.

Fackelmann G, Sommer S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Marine Poll Bull. 2019;143:193-203.

Oh S, Choi D, Cha CJ. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep. 2019;9(1):4598.

Xie X, Lu C, Wu M, Liang J, Ying Y, Liu K, et al. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013-2014). Environ Int. 2020;136:105445.

Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. Peer J. 2019;7:e7502.

Tsuruya A, Kuwahara A, Saito Y, Yamaguchi H, Tsubo T, Suga S, et al. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer. Sci Rep. 2016;6:27923.

Miyoshi J, Leone V, Nobutani K, Musch MW, Martinez-Guryn K, Wang Y, et al. Minimizing confounders and increasing data quality in murine models for studies of the gut microbiome. PeerJ. 2018;6:e5166.

Allegretti JR, Mullish BH, Kelly C, Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394(10196):420-31.

Wilson BC, Vatanen T, Cutfield WS, O'Sullivan JM. The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Front Cell Infect Microbiol. 2019;9:2.






Review Articles