The role and behaviour of mitochondrial creatine kinase in hepatocellular carcinoma and its potential use as a tumor detecting biomarker for cancer patients

Authors

  • Ali Nemati Siyahmazgi Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
  • Mina Ghorbani Mazar Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
  • Maede Vakilinia Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
  • Hossein Javid Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

DOI:

https://doi.org/10.18203/issn.2454-2156.IntJSciRep20230113

Keywords:

Hepatocellular carcinoma, Biomarkers, Mitochondrial creatine kinase, Liver cancer

Abstract

Hepatocellular carcinoma (HCC) is responsible for approximately 75% of all liver cancer cases, which is the seventh most prevalent cancer and the second most common cause of cancer mortality worldwide. The prognosis of HCC depends on its stage and the severity of liver disease at the time of diagnosis, but there are still problems in detecting and treating HCC patients on time and effectively. Being unable to diagnose HCC patients at an early stage and ineffective therapies for HCC patients with advanced stages are associated with the disease's high mortality. Liver transplantation could be a treatment option If patients are diagnosed early, but unfortunately, most patients are diagnosed at an advanced stage where chemotherapy is necessary. Thus, an effective strategy for early detection of HCC is necessary since there was no effective chemotherapy for advanced HCC for a long time, and therapies such as the anti-angiogenesis pathway can only extend the median survival from 7.9 months to 10.7 months which is a step forward but not enough. In this article, we review the role of MtCK in HCC and its potential use as a marker to see if using it can be beneficial to patients.

Metrics

Metrics Loading ...

References

Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, et al. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol. 2019;25(19):2279.

McGlynn KA, Petrick JL, El‐Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73:4-13.

Soroida Y, Ohkawa R, Nakagawa H, Satoh Y, Yoshida H, Kinoshita H, et al. Increased activity of serum mitochondrial isoenzyme of creatine kinase in hepatocellular carcinoma patients predominantly with recurrence. J Hepatol. 2012;57(2):330-6.

Petrick JL, Florio AA, Znaor A, Ruggieri D, Laversanne M, Alvarez CS, et al. International trends in hepatocellular carcinoma incidence, 1978–2012. Int J Canc. 2020;147(2):317-30.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Canc J Clin. 2018;68(6):394-424.

Uranbileg B, Enooku K, Soroida Y, Ohkawa R, Kudo Y, Nakagawa H, et al. High ubiquitous mitochondrial creatine kinase expression in hepatocellular carcinoma denotes a poor prognosis with highly malignant potential. Int J Canc. 2014;134(9):2189-98.

Rebouissou S, Nault J-C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol. 2020;72(2):215-29.

Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research. 2016;5.

Asare GA, Bronz M, Naidoo V, Kew MC. Synergistic interaction between excess hepatic iron and alcohol ingestion in hepatic mutagenesis. Toxicology. 2008;254(1-2):11-8.

Campbell PT, Newton CC, Freedman ND, Koshiol J, Alavanja MC, Freeman LEB, et al. Body mass index, waist circumference, diabetes, and risk of liver cancer for US adults. Canc Res. 2016;76(20):6076-83.

Ramadori P, Cubero FJ, Liedtke C, Trautwein C, Nevzorova YA. Alcohol and hepatocellular carcinoma: adding fuel to the flame. Cancers. 2017;9(10):130.

Haas RC, Korenfeld C, Zhang Z, Perryman B, Roman D, Strauss A. Isolation and characterization of the gene and cDNA encoding human mitochondrial creatine kinase. J Biol Chem. 1989;264(5):2890-7.

Onda T, Uzawa K, Endo Y, Bukawa H, Yokoe H, Shibahara T, et al. Ubiquitous mitochondrial creatine kinase downregulated in oral squamous cell carcinoma. Br J Canc. 2006;94(5):698-709.

Amamoto R, Uchiumi T, Yagi M, Monji K, Song Y, Oda Y, et al. The expression of ubiquitous mitochondrial creatine kinase is downregulated as prostate cancer progression. J Canc. 2016;7(1):50.

Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Mol Basis Dis. 2006;1762(2):164-80.

Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14.

Ellington WR. Evolution and physiological roles of phosphagen systems. Annual Rev Physiol. 2001;63(1):289-325.

Kottke M, Wallimann T, Brdiczka D. Dual electron microscopic localization of mitochondrial creatine kinase in brain mitochondria. Biochem Med Metab Biol. 1994;51(2):105-17.

Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T. Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation. 1991;46(2):77-87.

Frey TG, Mannella CA. The internal structure of mitochondria. Trends Biochem Sci. 2000;25(7):319-24.

Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996;381(6580):341-5.

Kekelidze T, Khait I, Togliatti A, Benzecry JM, Wieringa B, Holtzman D. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. J Neurosci Res. 2001;66(5):866-72.

Pratt R, Vallis LM, Lim CW, Chisnall WN. Mitochondrial creatine kinase in cancer patients. Pathology. 1987;19(2):162-5.

Fusae K, Isami K, Jun M, Tohru O. Mitochondrial creatine kinase as a tumor-associated marker. Clinica Chimica Acta. 1984;138(2):175-83.

Beal MF. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci. 2000;23(7):298-304.

Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25(10):502-8.

Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59-63.

Tarnopolsky M, Parshad A, Walzel B, Schlattner U, Wallimann T. Creatine transporter and mitochondrial creatine kinase protein content in myopathies. Muscle Nerve. 2001;24(5):682-8.

Steeghs K, Oerlemans F, De Haan A, Heerschap A, Verdoodt L, De Bie M, et al. Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies. Mol Cellular Biochem. 1998;184(1):183-94.

Thomas C, Carr AC, Winterbourn CC. Free radical inactivation of rabbit muscle creatine kinase: catalysis by physiological and hydrolyzed ICRF-187 (ICRF-198) iron chelates. Free Radical Res 1994;21(6):387-97.

Wolosker H, Panizzutti R, Engelender S. Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Letters. 1996;392(3):274-6.

Mekhfi H, Veksler V, Mateo P, Maupoil Vr, Rochette L, Ventura-Clapier Re. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circulation Res. 1996;78(6):1016-27.

Ingwall JS. Transgenesis and cardiac energetics: new insights into cardiac metabolism. J Mol Cellular Cardiol. 2004;37(3):613-23.

Schmitt T, Pette D. Increased mitochondrial creatine kinase in chronically stimulated fast-twitch rabbit muscle. FEBS Letters. 1985;188(2):341-4.

Apple F, Rogers M, Sherman W, Costill D, Hagerman F, Ivy J. Profile of creatine kinase isoenzymes in skeletal muscles of marathon runners. Clin Chem. 1984;30(3):413-6.

O'Gorman E, Beutner G, Wallimann T, Brdiczka D. Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1996;1276(2):161-70.

Liu XH, Qian LJ, Gong JB, Shen J, Zhang XM, Qian XH. Proteomic analysis of mitochondrial proteins in cardiomyocytes from chronic stressed rat. Proteomics. 2004;4(10):3167-76.

DeLuca M, Hall N, Rice R, Kaplan NO. Creatine kinase isozymes in human tumors. Biochem Biophys Res Comm. 1981;99(1):189-95.

Kornacker M, Schlattner U, Wallimann T, Verneris MR, Negrin RS, Kornacker B, et al. Hodgkin disease‐derived cell lines expressing ubiquitous mitochondrial creatine kinase show growth inhibition by cyclocreatine treatment independent of apoptosis. Int J Canc. 2001;94(4):513-9.

Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci. 1999;24(2):68-72.

Miller K, Halow J, Koretsky AP. Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia. Am J Physiol-Cell Physiol. 1993;265(6):C1544-51.

Xu J, Fu X, Pan M, Zhou X, Chen Z, Wang D, et al. Mitochondrial creatine kinase is decreased in the serum of idiopathic Parkinson’s disease patients. Aging Dis. 2019;10(3):601.

Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE. Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res. 2005;157(2):219-34.

Zhang Y, Sun M, Chen Y, Li B. MiR-519b-3p inhibits the proliferation and invasion in colorectal cancer via modulating the uMtCK/Wnt signaling pathway. Front Pharmacol. 2019;10:741.

Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci. 2006;7(3):207-19.

Chang C-C, Liou C-B, Su M-J, Lee Y-C, Liang C-T, Ho J-L, et al. Creatine kinase (CK)-MB-to-Total-CK ratio: a laboratory indicator for primary cancer screening. Asian Pacific J Canc Prev. 2015;16(15):6599-603.

Gines R, MF CM, JA RG, editors. Macro creatine kinase: illness marker. Practical guide for the management. Anales de medicina interna (Madrid, Spain: 1984). 2006.

Meffert G, Gellerich FN, Margreiter R, Wyss M. Elevated creatine kinase activity in primary hepatocellular carcinoma. BMC Gastroenterol. 2005;5(1):1-7.

Enooku K, Nakagawa H, Soroida Y, Ohkawa R, Kageyama Y, Uranbileg B, et al. Increased serum mitochondrial creatine kinase activity as a risk for hepatocarcinogenesis in chronic hepatitis C patients. Int J Canc. 2014;135(4):871-9.

Qian X-L, Li Y-Q, Gu F, Liu F-F, Li W-D, Zhang X-M, et al. Overexpression of ubiquitous mitochondrial creatine kinase (uMtCK) accelerates tumor growth by inhibiting apoptosis of breast cancer cells and is associated with a poor prognosis in breast cancer patients. Biochem Biophys Res Comm. 2012;427(1):60-6.

Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, et al. microRNA‐122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Systems Biol 2010;6(1):402.

Jopling C, Norman K, Sarnow P, editors. Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press. 2006.

Bertino G, Ardiri A, Malaguarnera M, Malaguarnera G, Bertino N, Calvagno GS, editors. Hepatocellualar carcinoma serum markers. Seminars in oncology. 2012.

Bertino G, Ardiri AM, Calvagno GS, Bertino N, Boemi PM. Prognostic and diagnostic value of des-γ-carboxy prothrombin in liver cancer. Drug News Perspect. 2010;23(8):498-508.

Bertino G, Ardiri A, Boemi P, Ierna D, Interlandi D, Caruso L, et al. A study about mechanisms of des-gamma-carboxy prothrombin's production in hepatocellular carcinoma. Panminerva Medica. 2008;50(3):221.

Hatano E, Tanaka A, Kanazawa A, Tsuyuki S, Tsunekawa S, Iwata S, et al. Inhibition of tumor necrosis factor‐induced apoptosis in transgenic mouse liver expressing creatine kinase. Liver Int. 2004;24(4):384-93.

Baggetto LG, Clottes E, Vial C. Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Cancer Res. 1992;52(18):4935-41.

Ronen S, Volk A, Mispelter J. Comparative NMR study of a differentiated rat hepatoma and its dedifferentiated subclone cultured as spheroids and as implanted tumors. NMR Biomed. 1994;7(6):278-86.

Tackels‐Horne D, Goodman MD, Williams AJ, Wilson DJ, Eskandari T, Vogt LM, et al. Identification of differentially expressed genes in hepatocellular carcinoma and metastatic liver tumors by oligonucleotide expression profiling. Cancer. 2001;92(2):395-405.

Yim SH, Ward JM, Dragan Y, Yamada A, Scacheri PC, Kimura S, et al. Microarray analysis using amplified mRNA from laser capture microdissection of microscopic hepatocellular precancerous lesions and frozen hepatocellular carcinomas reveals unique and consistent gene expression profiles. Toxicol Pathol. 2003;31(3):295-303.

Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver cancers. Mol Biol Cell. 2002;13(6):1929-39.

Castaldo G, Salvatore F, Sacchetti L. Serum type-2 macro-creatine kinase isoenzyme is not a useful marker of severe liver diseases or neoplasia. Clin Biochem. 1990;23(6):523-7.

Debrincat MA, Zhang J-G, Willson TA, Silke J, Connolly LM, Simpson RJ, et al. Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem. 2007;282(7):4728-37.

Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Canc Res. 2001;61(11):4365-70.

Kwon S, Kim D, Rhee JW, Park J-A, Kim D-W, Kim D-S, et al. ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function. BMC Biol. 2010;8(1):1-22.

Zhang S, Hennessey T, Yang L, Starkova N, Beal M, Starkov A. Impaired brain creatine kinase activity in Huntington’s disease. Neurodegenerative Dis. 2011;8(4):194-201.

Downloads

Published

2023-01-24

Issue

Section

Review Articles