Susceptibility profile of the population to artemether, lumefantrine, dihydroartemisinin and piperaquine for samples transported in a formulated transport media and ethylenediamine tetraacetic acid anticoagulants: a study conducted in Maseno area, Western

Authors

  • Scolastica C. Korir Department of Medical Microbiology, School of Medicine, Maseno University, Kenya

DOI:

https://doi.org/10.18203/issn.2454-2156.IntJSciRep20251043

Keywords:

EDTA, Susceptibility, Sensitivity, Ex vivo, Invitro, Surveillance

Abstract

Background: In vitro sensitivity testing is one of the preferred methods of measuring susceptibility and undertaking surveillance of antimalarial drug efficacy. This method is able to measure Plasmodium falciparum susceptibility to several antimalarial drugs simultaneously, away from the influence of host immune related factors. The technique is being transitioned to ex vivo requiring tests on fresh sample. Such in vitro studies of field P. falciparum have been attributed to diminished viability as they transition from host ecosystem to lab conditions due to lack of a proper medium to stabilize the parasites. It is therefore imperative to calibrate the sample stabilization media to reduce artificial effects to the assay This study was meant to evaluate the effect of a formulated transport medium (TM) on viability of Plasmodium. The study assayed standard clones (W2 and 3D7), field isolates and compared the results with other published findings to come up with antimalarial susceptibility profile of the region.

Methods: Blood samples were collected from 322 assenting individuals from Maseno division visiting Chulaimbo Sub county hospital and confirmed positive for malaria. Each sample, split in to EDTA versus TM was analysed for susceptibility to artemether (ART), lumefantrine (LUM), dihydroartemisinin (DHA) and piperaquine (PPQ) using malaria SYBR green assay. IC50 was determined for each sample between TM and EDTA using dose response curves.  

Results: Results showed that the IC50 values of the field isolates in EDTA were higher although not significant (p=0.99, 0.74, 0.68, 0.82 for ART, LUM, DHA and PPQ respectively) than those in the TM. Among the clones, PPQ was the only drug with a high significant IC50 decrease (p<0.001) in TM for the W2 and a moderately significant decrease (p=0.028) in EDTA for 3D7 clone.

Conclusions: Lower IC50 values recorded by the field isolates against the antimalarials were indicative of their high susceptibility to the drugs.

Metrics

Metrics Loading ...

References

Kimoloi S, Okeyo N, Bartholomew, Ondigo B, Langat B. Choice and Sources of Antimalarial Drugs Used for Self-medication in Kisumu, Western Kenya. Afr J Pharmacol Therap. 2013;2(4):124-9.

Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS One. 2011;6(11):e26005. DOI: https://doi.org/10.1371/journal.pone.0026005

Rieckmann KH, Campbell GH, Sax LJ, Mrema JE. Drug sensitivity of plasmodium falciparum. An in-vitro microtechnique. Lancet. 1978;1(8054):22-3. DOI: https://doi.org/10.1016/S0140-6736(78)90365-3

Wirjanata G, Handayuni I, Prayoga P, Apriyanti D, Chalfein F, Sebayang BF, et al. Quantification of Plasmodium ex vivo drug susceptibility by flow cytometry. Malar J. 2015;14:417. DOI: https://doi.org/10.1186/s12936-015-0940-8

Bloland P. Drug Resistance in Malaria. World Health Organization Geneva. 2001. Available at: https://iris.who.int/handle/10665/66847. Accessed on 12 January 2025.

World Health Organization. In vitro Microtest (Mark II) for the assessment of response of Plasmodium falciparum to chloroquine, mefloquine, quinine, sulfadoxine/pyrimethamine and amodiaquine. 1990. Available at: https://iris.who.int/bitstream/10665/ 67373/1/a76873.pdf. Accessed on 12 January 2025.

Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16(6):710-8. DOI: https://doi.org/10.1128/AAC.16.6.710

Kaddouri H, Nakache S, Houzé S, Mentré F, Le Bras J. Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother. 2006;50(10):3343-9. DOI: https://doi.org/10.1128/AAC.00367-06

Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M. Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother. 2005;49(8):3575-7. DOI: https://doi.org/10.1128/AAC.49.8.3575-3577.2005

Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48(5):1803-6. DOI: https://doi.org/10.1128/AAC.48.5.1803-1806.2004

Basco LK. Molecular epidemiology of malaria in cameroon. Xx. Experimental studies on various factors of in vitro drug sensitivity assays using fresh isolates of plasmodium falciparum. Am J Trop Med Hyg. 2004;70(5):474-80. DOI: https://doi.org/10.4269/ajtmh.2004.70.474

Akala HM, Eyase FL, Cheruiyot AC, Omondi AA, Ogutu BR, Waters NC, et al. Antimalarial drug sensitivity profile of western Kenya Plasmodium falciparum field isolates determined by a SYBR Green I in vitro assay and molecular analysis. Am J Trop Med Hyg. 2011;85(1):34-41. DOI: https://doi.org/10.4269/ajtmh.2011.10-0674

Liu S, Mu J, Jiang H, Su XZ. Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping. Am J Trop Med Hyg. 2008;79(2):178-84. DOI: https://doi.org/10.4269/ajtmh.2008.79.178

Brumpt E. The human Parasites of the genus Plasmodium. In "Malariology: A Comprehensive Survey of All Aspects of This Group of Diseases from a Global Standpoint". Boyd MF, Editor. Saunders, Philadelphia/London. 1999;65-121.

McKenzie FE, Smith DL, O'Meara WP, Riley EM. Strain theory of malaria: the first 50 years. Adv Parasitol. 2008;66:1-46. DOI: https://doi.org/10.1016/S0065-308X(08)00201-7

Mackinnon MJ, Read AF. Selection for high and low virulence in the malaria parasite Plasmodium chabaudi. Proc Biol Sci. 1999;266(1420):741-8. DOI: https://doi.org/10.1098/rspb.1999.0699

World Health Organization PAR Part 4. Guidelines on Treatment of Malaria; 2010: 2nd edition. https://www.paho.org/en/documents/guidelines-treatment-malaria-second-edition-2010

World Health Organization. Guidelines for the treatment of malaria. WHO Guidelines Approved by the Guidelines Review Committee. 2010.

Nosten F, White NJ. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg. 2007;77(6):181-92. DOI: https://doi.org/10.4269/ajtmh.2007.77.181

Zongo I, Dorsey G, Rouamba N, Tinto H, Dokomajilar C, Guiguemde RT, et al. Artemether-lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial. Lancet. 2007;369(9560):491-8. DOI: https://doi.org/10.1016/S0140-6736(07)60236-0

Sinclair D, Zani B, Donegan S, Olliaro P, Garner P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev. 2009;2009(3):CD007483. DOI: https://doi.org/10.1002/14651858.CD007483.pub2

Kokwaro G, Mwai L, Nzila A. Artemether/lumefantrine in the treatment of uncomplicated falciparum malaria. Expert Opin Pharmacother. 2007;8(1):75-94. DOI: https://doi.org/10.1517/14656566.8.1.75

Dorsey G, Kamya MR, Singh A, Rosenthal PJ. Four Artemisinin-Based Combinations Study Group. A head-to-head comparison of four artemisinin-based combinations for treating un-complicated malaria in African children: a randomized trial. PLoS Med. 2010;8:1001-119. DOI: https://doi.org/10.1371/journal.pmed.1001119

Falade CO, Ogundele AO, Yusuf BO, Ademowo OG, Ladipo SM. High efficacy of two artemisinin-based combinations (artemether-lumefantrine and artesunate plus amodiaquine) for acute uncomplicated malaria in Ibadan, Nigeria. Trop Med Int Health. 2008;13(5):635-43. DOI: https://doi.org/10.1111/j.1365-3156.2008.02043.x

Kobbe R, Klein P, Adjei S, Amemasor S, Thompson WN, Heidemann H, et al. A randomized trial on effectiveness of artemether-lumefantrine versus artesunate plus amodiaquine for unsupervised treatment of uncomplicated Plasmodium falciparum malaria in Ghanaian children. Malar J. 2008;7:261. DOI: https://doi.org/10.1186/1475-2875-7-261

Yeka A, Dorsey G, Kamya MR, Talisuna A, Lugemwa M, Rwakimari JB, et al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in Uganda. PLoS One. 2008;3(6):e2390.

Anderson TJ, Nair S, Qin H, Singlam S, Brockman A, Paiphun L, Nosten F. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother. 2005;49(6):2180-8. DOI: https://doi.org/10.1128/AAC.49.6.2180-2188.2005

Pradines B, Hovette P, Fusai T, Atanda HL, Baret E, Cheval P, et al. Prevalence of in vitro resistance to eleven standard or new antimalarial drugs among Plasmodium falciparum isolates from Pointe-Noire, Republic of the Congo. J Clin Microbiol. 2006;44(7):2404-8. DOI: https://doi.org/10.1128/JCM.00623-06

Parola P, Pradines B, Simon F, Carlotti MP, Minodier P, Ranjeva MP, et al. Antimalarial drug susceptibility and point mutations associated with drug resistance in 248 Plasmodium falciparum isolates imported from Comoros to Marseille, France in 2004 2006. Am J Trop Med Hyg. 2007;77(3):431-7. DOI: https://doi.org/10.4269/ajtmh.2007.77.431

Basco LK, Ringwald P. Molecular epidemiology of malaria in Cameroon. XXIV. Trends of in vitro antimalarial drug responses in Yaounde, Cameroon. Am J Trop Med Hyg. 2007;76(1):20-6. DOI: https://doi.org/10.4269/ajtmh.2007.76.20

Mayxay M, Barends M, Brockman A, Jaidee A, Nair S, Sudimack D, et al. In vitro antimalarial drug susceptibility and pfcrt mutation among fresh Plasmodium falciparum isolates from the Lao PDR (Laos). Am J Trop Med Hyg. 2007;76(2):245-50. DOI: https://doi.org/10.4269/ajtmh.2007.76.245

Kaddouri H, Djimdé A, Dama S, Kodio A, Tekete M, Hubert V, et al. Baseline in vitro efficacy of ACT component drugs on Plasmodium falciparum clinical isolates from Mali. Int J Parasitol. 2008;38(7):791-8. DOI: https://doi.org/10.1016/j.ijpara.2007.12.002

Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, Kokwaro G, et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar J. 2009;8:106.

Pradines B, Mabika Mamfoumbi M, Parzy D, Owono Medang M, Lebeau C, Mourou Mbina JR, et al. In vitro susceptibility of African isolates of Plasmodium falciparum from Gabon to pyronaridine. Am J Trop Med Hyg. 1999;60(1):105-8. DOI: https://doi.org/10.4269/ajtmh.1999.60.105

Basco LK, Le Bras J. In vitro activity of artemisinin derivatives against African isolates and clones of Plasmodium falciparum. Am J Trop Med Hyg. 1993;49(3):301-7. DOI: https://doi.org/10.4269/ajtmh.1993.49.301

Fall B, Diawara S, Sow K, Baret E, Diatta B, Fall KB, et al. Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs. Malar J. 2011;10:310. DOI: https://doi.org/10.1186/1475-2875-10-310

Pascual A, Parola P, Benoit-Vical F, Simon F, Malvy D, Picot S, et al. Ex vivo activity of the ACT new components pyronaridine and piperaquine in comparison with conventional ACT drugs against isolates of Plasmodium falciparum. Malar J. 2012;11:45. DOI: https://doi.org/10.1186/1475-2875-11-45

Lan CX, Lin X, Huang ZS, Chen YS, Guo RN. In vivo sensitivity of Plasmodium falciparum to piperaquine phosphate assayed in Linshui and Baisha counties, Hainan Province. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 1989;7(3):163-5.

Chen L. Recent studies on antimalarial efficacy of piperaquine and hydroxypiperaquine. Chin Med J (Engl). 1991;104(2):161-3. DOI: https://doi.org/10.3901/JME.2004.02.161

Guo XB, Fu LC, Fu YX, Qian BS, Li GQ. Randomized comparison of the treatment of falciparum malaria with dihydroartemisinin and piperaquine. Nat Med J China. 1993;73:602-4.

Deloron P, Le Bras J, Ramanamirija JA, Coulanges P. Plasmodium falciparum in Madagascar: in vivo and in vitro sensitivity to seven drugs. Ann Trop Med Parasitol. 1985;79(4):357-65. DOI: https://doi.org/10.1080/00034983.1985.11811932

Basco LK, Ringwald P. In vitro activities of piperaquine and other 4-aminoquinolines against clinical isolates of Plasmodium falciparum in Cameroon. Antimicrob Agents Chemother. 2003;47(4):1391-4. DOI: https://doi.org/10.1128/AAC.47.4.1391-1394.2003

German PI, Aweeka FT. Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet. 2008;47(2):91-102. DOI: https://doi.org/10.2165/00003088-200847020-00002

Conrad MD, LeClair N, Arinaitwe E, Wanzira H, Kakuru A, Bigira V, et al. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect Dis. 2014;210(3):344-53. DOI: https://doi.org/10.1093/infdis/jiu141

Kamya MR, Yeka A, Bukirwa H, Lugemwa M, Rwakimari JB, Staedke SG, et al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment of malaria: a randomized trial. PLoS Clin Trials. 2007;2(5):e20.

Yeka A, Dorsey G, Kamya MR, Talisuna A, Lugemwa M, Rwakimari JB, et al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in Uganda. PLoS One. 2008;3(6):e2390. DOI: https://doi.org/10.1371/journal.pone.0002390

Arinaitwe E, Sandison TG, Wanzira H. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for falciparum malaria: a longitudinal, randomized trial in young Ugandan children. Clin Infect Dis. 2009;49:1629-37. DOI: https://doi.org/10.1086/647946

Nsobya SL, Kiggundu M, Nanyunja S, Joloba M, Greenhouse B, Rosenthal PJ. In vitro sensitivities of Plasmodium falciparum to different antimalarial drugs in Uganda. Antimicrob Agents Chemother. 2010;54(3):1200-6. DOI: https://doi.org/10.1128/AAC.01412-09

Lim P, Dek D, Try V, Eastman RT, Chy S, Sreng S, et al. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in western, northern, and eastern Cambodia, 2011-2012: association with molecular markers. Antimicrob Agents Chemother. 2013;57(11):5277-83. DOI: https://doi.org/10.1128/AAC.00687-13

Basco LK. Molecular epidemiology of malaria in Cameroon. XV. Experimental studies on serum substitutes and supplements and alternative culture media for in vitro drug sensitivity assays using fresh isolates of Plasmodium falciparum. Am J Trop Med Hyg. 2003;69(2):168-73. DOI: https://doi.org/10.4269/ajtmh.2003.69.168

Tinto H, Bonkian LN, Nana LA, Yerbanga I, Lingani M, Kazienga A, et al. Ex vivo anti-malarial drugs sensitivity profile of Plasmodium falciparum field isolates from Burkina Faso five years after the national policy change. Malar J. 2014;13:207. DOI: https://doi.org/10.1186/1475-2875-13-207

Pradines B, Rogier C, Fusai T, Tall A, Trape JF, Doury JC. In vitro activity of artemether against African isolates (Senegal) of Plasmodium falciparum in comparison with standard antimalarial drugs. Am J Trop Med Hyg. 1998;58(3):354-7. DOI: https://doi.org/10.4269/ajtmh.1998.58.354

Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, Kokwaro G, et al. Chloroquine resistance before and after its withdrawal in Kenya. Malar J. 2009;8:106. DOI: https://doi.org/10.1186/1475-2875-8-106

Yavo W, Faye B, Kuete T, Djohan V, Oga SA, Kassi RR, et al. Multicentric assessment of the efficacy and tolerability of dihydroartemisinin-piperaquine compared to artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa. Malar J. 2011;10:198. DOI: https://doi.org/10.1186/1475-2875-10-198

Hao M, Jia D, Li Q, He Y, Yuan L, Xu S, et al. In vitro sensitivities of Plasmodium falciparum isolates from the China-Myanmar border to piperaquine and association with polymorphisms in candidate genes. Antimicrob Agents Chemother. 2013;57(4):1723-9. DOI: https://doi.org/10.1128/AAC.02306-12

Briolant S, Henry M, Oeuvray C, Amalvict R, Baret E, Didillon E, et al. Absence of association between piperaquine in vitro responses and polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe genes in Plasmodium falciparum. Antimicrob Agents Chemother. 2010;54(9):3537-44. DOI: https://doi.org/10.1128/AAC.00183-10

Price RN, Hasugian AR, Ratcliff A, Siswantoro H, Purba HL, Kenangalem E, et al. Clinical and pharmacological determinants of the therapeutic response to dihydroartemisinin-piperaquine for drug-resistant malaria. Antimicrob Agents Chemother. 2007;51(11):4090-7. DOI: https://doi.org/10.1128/AAC.00486-07

Myint HY, Ashley EA, Day NP, Nosten F, White NJ. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg. 2007;101(9):858-66. DOI: https://doi.org/10.1016/j.trstmh.2007.05.018

Awab GR, Pukrittayakamee S, Imwong M, Dondorp AM, Woodrow CJ, Lee SJ, et al. Dihydroartemisinin-piperaquine versus chloroquine to treat vivax malaria in Afghanistan: an open randomized, non-inferiority, trial. Malar J. 2010;9:105. DOI: https://doi.org/10.1186/1475-2875-9-105

Kamya MR, Yeka A, Bukirwa H, Lugemwa M, Rwakimari JB, Staedke SG, et al. Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment of malaria: a randomized trial. PLoS Clin Trials. 2007;2(5):e20. DOI: https://doi.org/10.1371/journal.pctr.0020020

Downloads

Published

2025-04-23

How to Cite

Korir, S. C. (2025). Susceptibility profile of the population to artemether, lumefantrine, dihydroartemisinin and piperaquine for samples transported in a formulated transport media and ethylenediamine tetraacetic acid anticoagulants: a study conducted in Maseno area, Western. International Journal of Scientific Reports, 11(5), 185–192. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20251043

Issue

Section

Original Research Articles