Analyzing the large number problem and Newton’s G via a relativistic quantum loop model of the electron

Authors

  • William Sydney Oakley NanoScale Storage Systems, Inc. (aka NS3)

DOI:

https://doi.org/10.18203/issn.2454-2156.IntJSciRep20150671

Keywords:

Large numbers, Gravity, Quantum loop electron model

Abstract

The long standing problem of large numbers ~ 1044 in physics is addressed by analyzing a conceptual electron model whereby a single photon propagates adjacent to a closed space-time metric of toroidal geometry. The quantum loop based model generates the major particle characteristics: a magnetic dipole, a radial electric field, and a gravitational effect consistent with the electron rest mass. The large number value obtained by this analysis closely matches that from empirical data and clarifies the nature of Newton’s constant, GN. The particle concept provides a basis from which development of a detailed electron model should be possible.

Metrics

Metrics Loading ...

Author Biography

William Sydney Oakley, NanoScale Storage Systems, Inc. (aka NS3)

President

References

Ray S, Mukhopadhyay U, Ghosh PP. Large Number Hypothesis: A Review, 2007. arXiv:0705.1836 [gr-qc].

Weyl H. Zur Gravitationstheorie. Annalen der Physik. 1917;359(18):117.

Weyl H. Eine neue Erweiterung der Relativitätstheorie. Annalen der Physik. 1919;364(10):101.

Milne EA. Relativity, Gravity and World Structure. Oxford University Press, 1935.

Uzan JP. The fundamental constants and their variation, Observational status and theoretical motivations. Reviews of Modern Physics. 2003;75(2):403.

Blake G. The Large Numbers Hypothesis and the rotation of the Earth. Monthly Notices of the Royal Astronomical Society. 1978;185:399.

Falik D. Primordial Nucleosynthesis and Dirac's Large Numbers Hypothesis. The Astrophysical Journal. 1979;231: L1.

Canuto V, Hsieh S. The 3 K blackbody radiation, Dirac's Large Numbers Hypothesis, and scale-covariant cosmology. The Astrophysical Journal. 1978;224:302.

Canuto V, Hsieh S. Primordial nucleosynthesis and Dirac's large numbers hypothesis. The Astrophysical Journal. 1980;239:L91.

Jordan P. Die Herkunft der Sterne. Wissenschaftliche Verlagsgesellschaft. 1947. doi:10.1002/asna.19472751012.

Shemi-Zadah VE. Coincidence of Large Numbers, exact value of cosmological parameters and their analytical representation. 2002. arXiv:gr-qc/0206084 [gr-qc].

Zizzi P. Quantum Foam and de Sitter-like Universes. International Journal of Theoretical Physics. 1998;38(9):2333–48.

Carneiro S. The Large Numbers Hypothesis and Quantum Mechanics. Foundations of Physics Letters. 1997;11:95.

Nottale L. Mach's Principle, Dirac's Large Numbers and the Cosmological Constant Problem.

Matthews R. Robert Matthews: Dirac's coincidences sixty years on.

Lyre H. C. F. Weizsäcker's Reconstruction of Physics: Yesterday, Today and Tomorrow. 2003. arXiv:quant-ph/0309183 [quant-ph].

Gornitz T. New Look at the Large Numbers. International Journal of Theoretical Physics. 1986;25(8):897.

Genreith H. The Large Numbers Hypothesis: Outline of a self-similar quantum cosmological Model. 1999. arXiv:gr-qc/9909009 [gr-qc].

Sidharth B. The Planck Scale Underpinning for Spacetime. 2005. arXiv:physics/0509026 [physics.gen-ph].

Downloads

Published

2015-08-31

How to Cite

Oakley, W. S. (2015). Analyzing the large number problem and Newton’s G via a relativistic quantum loop model of the electron. International Journal of Scientific Reports, 1(4), 201–205. https://doi.org/10.18203/issn.2454-2156.IntJSciRep20150671

Issue

Section

Original Research Articles